Carl Zeiss Telephoto Power Pack

Tele-Superachromat T* 2.8/300 and Apo- Mutar® 1.7x E T*

Tele-Superachromat T* 2.8/300

The Tele-Superachromat T* 2.8/300 lens is the fastest telephoto lens in professional medium format with an outstanding optical performance on “Superachromat” level. It covers frames up to 6 cm x 6 cm. Included with the lens is a dedicated teleconverter Carl Zeiss Apo-Mutar® 1.7x E T*, designed for the Tele-Superachromat T* 2.8/300 lens right from the beginning. The combination of prime lens and teleconverter builds a powerful 500 mm f/4.8 telephoto.

The cross section of the optical system indicates to the expert, that considerable amounts of optical glass are incorporated and smooth transition of image forming rays is ensured. Several lens elements are made of fluor crown glass with anomalous partial dispersion to provide excellent correction of chromatic aberrations even at wide open aperture. Veiling glare is meticulously controlled to ensure brilliant color saturation under adverse lighting conditions. Especially for this lens Carl Zeiss invented a novel mechanism for internal focusing ensuring movement of large and relatively heavy optical elements with unparalleled accuracy. The Tele-Superachromat T* 2.8/300 lens can be focused down to 2.5 meters - even with the 1.7x Apo-Mutar® teleconverter in use - thus opening unique creative opportunities.

Focusing scales are provided in m and feet. All scales are engraved. The focusing ring can move beyond infinity to allow use of this lens in a variety of temperature conditions. For additional creative possibilities a drop-in filter slot is provided and a high-quality polarizing filter, which is a part of the package, can be smoothly rotated in its own ball bearing.

The lens is equipped with a rotatable collar for flexible use, especially with rectangular film frames. It can be safely locked in any position and has a notch every 90 degrees. This collar carries the Hasselblad system tripod quick mount and standard threads 1/4” and 3/8” right under the center of gravity of camera and lens combined. Also built-in is the electronic circuitry for databus communication with all Hasselblad 200 series cameras.

Preferred use: people, fashion, advertising, industrial, sports, cars, motorcycles, nature and wildlife
Tele-Superachromat T* 2.8/300

<table>
<thead>
<tr>
<th>Cat. No. of lens</th>
<th>Number of elements</th>
<th>Number of groups</th>
<th>Max. aperture</th>
<th>Focal length</th>
<th>Angular field*</th>
<th>Min. aperture</th>
<th>Camera mount</th>
<th>Filter connection</th>
<th>Focusing range</th>
<th>Working distance (between mechanical front end of lens and subject)</th>
<th>Close limit field size</th>
<th>Max. scale</th>
<th>Entrance pupil*</th>
<th>Position</th>
<th>Diameter</th>
<th>Exit pupil*</th>
<th>Position</th>
<th>Diameter</th>
<th>Position of principal planes*</th>
<th>H</th>
<th>H'</th>
<th>Back focal distance</th>
<th>Distance between first and last lens vertex*</th>
<th>Weight</th>
<th>Distance between first and last lens vertex*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 45 53</td>
<td>9 + drop-in filter</td>
<td>8</td>
<td>f/2.8</td>
<td>299.9 mm</td>
<td>width 11°, height 11°, diagonal 2w 15°</td>
<td>22</td>
<td>FE</td>
<td>drop-in filter</td>
<td>infinity to 2.5 m</td>
<td>2.1 m</td>
<td>377 mm x 377 mm</td>
<td>1.6:9</td>
<td>348.4 mm behind the first lens vertex</td>
<td>105.3 mm</td>
<td>2.0 mm behind the last lens vertex</td>
<td>47.9 mm</td>
<td>20.9 mm in front of the first lens vertex</td>
<td>163.5 mm in front of the last lens vertex</td>
<td>134.4 mm behind the aperture stop</td>
<td>168.4 mm to aperture stop</td>
<td>3800 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* at infinity

Tele-Superachromat T* 2.8/300 and Apo- Mutar ® 1.7x E T*

<table>
<thead>
<tr>
<th>Cat. No. of lens</th>
<th>Number of elements</th>
<th>Number of groups</th>
<th>Max. aperture</th>
<th>Focal length</th>
<th>Angular field*</th>
<th>Min. aperture</th>
<th>Camera mount</th>
<th>Filter connection</th>
<th>Focusing range</th>
<th>Working distance (between mechanical front end of lens and subject)</th>
<th>Close limit field size</th>
<th>Max. scale</th>
<th>Entrance pupil*</th>
<th>Position</th>
<th>Diameter</th>
<th>Exit pupil*</th>
<th>Position</th>
<th>Diameter</th>
<th>Position of principal planes*</th>
<th>H</th>
<th>H'</th>
<th>Back focal distance</th>
<th>Distance between first and last lens vertex*</th>
<th>Weight</th>
<th>Distance between first and last lens vertex*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 45 53 + 10 43 41</td>
<td>9 + 7 + drop-in filter</td>
<td>8 + 4</td>
<td>f/4.8</td>
<td>503.5 mm</td>
<td>width 6.2°, height 6.2°, diagonal 2w 8.7°</td>
<td>32 (engraved)</td>
<td>FE</td>
<td>drop-in filter</td>
<td>infinity to 2.5 m</td>
<td>2.1 m</td>
<td>224 mm x 224 mm</td>
<td>1.4:1</td>
<td>348.5 mm behind the first lens vertex</td>
<td>105.3 mm</td>
<td>3.5 mm in front of the last lens vertex</td>
<td>33.4 mm</td>
<td>742.7 mm in front of the last lens vertex</td>
<td>418.0 mm in front of the last lens vertex</td>
<td>85.4 mm</td>
<td>279 mm</td>
<td>4230 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* at infinity
Performance data:
Tele-Superachromat T* 2.8/300
Cat. No. 10 45 53

1. MTF Diagrams
 The image height u, calculated from the image center, is entered in mm on the horizontal axis of the graph. The modulation transfer T (MTF = Modulation Transfer Factor) is entered on the vertical axis. Parameters of the graph are the spatial frequencies R in cycles (line pairs) per mm given at the top of this page. The lowest spatial frequency corresponds to the upper pair of curves, the highest spatial frequency to the lower pair. Above each graph, the f-number k is given for which the MTF data apply. “White” light means that the data is valid for a subject illumination having the approximate spectral distribution of daylight. Unless otherwise indicated, the performance data refer to large object distances, for which normal photographic lenses are primarily used.

2. Relative illuminance
 In this diagram the horizontal axis gives the image height u in mm and the vertical axis the relative illuminance E, both for full aperture and a moderately stopped-down lens. The values for E are determined taking into account vignetting and natural light decrease.

3. Distortion
 Here again the image height u is entered on the horizontal axis in mm. The vertical axis gives the distortion V in % of the relevant image height. A positive value for V means that the actual image point is further from the image center than with perfectly distortion-free imaging (pincushion distortion); a negative V indicates barrel distortion.
Performance data:

Tele-Superachromat T * 2.8/300 and Apo- **Mutar** ® 1.7x E T*

Cat. No. 10 45 53 and 10 43 41

Modulation transfer T as a function of image height u. White light. Spatial frequencies $R = 10, 20$ and 40 cycles/mm

f-number	$k=4.8$	f-number	$k=9.6$
T (%)	T (%)		
0	10	20	30
0	10	20	30

Relative illuminance E (%)

| u (mm) | $k=4.8$ | $k=9.6$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Distortion in % of image height u

| u (mm) | V
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Subject to change.

Printed in Germany 25.05.2000

Carl Zeiss
Photoobjektive
D-73446 Oberkochen
Telephone (07364) 20-6175
Fax (07364) 20-4045
eMail: photo@zeiss.de
http://www.zeiss.de