ZEISS SUPREME PRIME & SUPREME PRIME RADIANCE LENSES
ZEISS Supreme Prime & Supreme Prime Radiance Lenses

Overview

ZEISS Supreme Prime
13 lenses by the end of 2020

15 mm / T1.8 18 mm / T1.5 21 mm / T1.5 25 mm / T1.5 29 mm / T1.5 35 mm / T1.5 50 mm / T1.5

65 mm / T1.5 85 mm / T1.5 100 mm / T1.5 135 mm / T1.5 150 mm / T1.8 200 mm / T2.2
ZEISS Supreme Prime Radiance
7 lenses upon release in April 2020.
Opening up new dimensions.
ZEISS Supreme Prime Lenses
Cinematographer Akira Sako on the set of “Tsunageru”.
Photo: Kozo Takahashi.
Cinematic large-format coverage and high speed

The ZEISS Supreme Prime lenses are designed for cinematic large-format sensor coverage, making them the ideal choice for current and future camera systems. With most lenses at T1.5, the ZEISS Supreme Primes demonstrate their unsurpassed craftsmanship in tricky low-light environments. They give the creator absolute control by revealing subtly nuanced details in deep shadows and bright highlights.

Cinematographer: Paul Cameron.
Shot with ZEISS Supreme Prime lenses and SONY Venice.
Watch "Ties" here: zeiss.lyties
A very smooth transition between in-focus and out of focus areas characterize the unique look of the ZEISS Supreme Prime lenses. This adds richer texture and greater depth to the image. The lenses are developed for modern digital cinematography with cutting-edge optics and key enhancements to aid the HDR process. They maintain dynamic range and micro contrast levels fine-tuned to bring out details in the shadows and the mids.

Aesthetic focus fall-off and elegant bokeh
A versatile look and gentle sharpness

The ZEISS Supreme Primes possess a look, which ensures freedom in creating the look you want to achieve. With captivating clarity, they ensure that you can capture every detail in the expression on an actor’s face to convey and emphasize emotion. Especially when capturing crucial textures such as skin tones, the unique quality of the ZEISS Supreme Prime lenses is a gentle sharpness that renders a crisp but organic look.
The unique ZEISS eXtended Data technology offers lens metadata critical for VFX-intensive productions and workflows on set. It unifies two data sets: key lens data based on the Cooke \(\mathbb{R} \) technology and supported by a wide range of cameras and accessories, plus ZEISS specific lens data that contains precise shading and distortion characteristics of the lens. The frame accurate information about focal length, focusing distance, T-stop and depth-of-field enables the camera assistant to work more precisely and eliminates guesswork for the DIT. The ZEISS specific distortion and shading data makes shooting grids redundant and accelerates compositing and stitching in post-production.

* \(\mathbb{R} \) is a registered trademark of Cooke Optics Limited used with permission
Consistency is one of the key elements offered by the ZEISS Supreme Prime lenses: that means consistent coverage, color rendering, aperture, size, weight and ergonomics. All the lenses across the family cover full frame and even bigger sensors with an image circle of 46.3 mm. The Supreme Prime lenses are color matched across the full range and most feature a fast T-stop of T1.5. The small front diameter of 95 mm on almost all lenses and standardized positioning of the focus and iris rings across the whole family facilitate fast and easy equipment changeout. The compact and lightweight design means you enjoy easy and comfortable handling. The ultra-smooth focus rotation of the Supreme Prime lenses even in extreme temperatures allows for small motors to make sure you have an easy setup that’s enjoyable to work with.
Technical Data

<table>
<thead>
<tr>
<th>Supreme Prime</th>
<th>Release</th>
<th>Aperture</th>
<th>Close Focus<sup>1</sup></th>
<th>Length<sup>2</sup></th>
<th>Front diameter</th>
<th>Weight</th>
<th>Horizontal Angle of View<sup>3</sup></th>
<th>Super 35<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mm T1.8</td>
<td>2020</td>
<td>T1.8 to T22</td>
<td>tbd</td>
<td>114 mm / 4.5"</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>18 mm T1.5</td>
<td>2020</td>
<td>T1.5 to T22</td>
<td>tbd</td>
<td>163 mm / 6.4"</td>
<td>114 mm / 4.5"</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>21 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>0.35 m / 13.7"</td>
<td>119 mm / 4.7"</td>
<td>95 mm / 3.7"</td>
<td>1.61 kg / 3.55 lbs</td>
<td>79.5°</td>
<td>59.8°</td>
</tr>
<tr>
<td>25 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>0.26 m / 10"</td>
<td>119 mm / 4.7"</td>
<td>95 mm / 3.7"</td>
<td>1.42 kg / 3.13 lbs</td>
<td>70.8°</td>
<td>52.3°</td>
</tr>
<tr>
<td>29 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>0.33 m / 13"</td>
<td>121 mm / 4.8"</td>
<td>95 mm / 3.7"</td>
<td>1.61 kg / 3.55 lbs</td>
<td>64°</td>
<td>46.8°</td>
</tr>
<tr>
<td>35 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>0.32 m / 13"</td>
<td>119 mm / 4.7"</td>
<td>95 mm / 3.7"</td>
<td>1.40 kg / 3.09 lbs</td>
<td>55°</td>
<td>39.6°</td>
</tr>
<tr>
<td>50 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>0.45 m / 18"</td>
<td>119 mm / 4.7"</td>
<td>95 mm / 3.7"</td>
<td>1.22 kg / 2.69 lbs</td>
<td>39°</td>
<td>27.5°</td>
</tr>
<tr>
<td>65 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>0.6 m / 2'</td>
<td>121 mm / 4.8"</td>
<td>95 mm / 3.7"</td>
<td>1.63 kg / 3.59 lbs</td>
<td>30.5°</td>
<td>21.3°</td>
</tr>
<tr>
<td>85 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>0.84 m / 2'9"</td>
<td>119 mm / 4.7"</td>
<td>95 mm / 3.7"</td>
<td>1.42 kg / 3.13 lbs</td>
<td>24°</td>
<td>16.7°</td>
</tr>
<tr>
<td>100 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>1.1 m / 3'9"</td>
<td>119 mm / 4.7"</td>
<td>95 mm / 3.7"</td>
<td>1.70 kg / 3.74 lbs</td>
<td>20.4°</td>
<td>14.2°</td>
</tr>
<tr>
<td>135 mm T1.5</td>
<td>Shipping</td>
<td>T1.5 to T22</td>
<td>1.35 m / 4'5"</td>
<td>146 mm / 5.7"</td>
<td>114 mm / 4.5"</td>
<td>2.27 kg / 5.00 lbs</td>
<td>15.6°</td>
<td>10.9°</td>
</tr>
<tr>
<td>150 mm T1.8</td>
<td>Q4 2019</td>
<td>T1.8 to T22</td>
<td>1.5 m / 4'11"</td>
<td>146 mm / 5.7"</td>
<td>114 mm / 4.5"</td>
<td>2.27 kg / 5.00 lbs</td>
<td>13.7°</td>
<td>9.5°</td>
</tr>
<tr>
<td>200 mm T2.2</td>
<td>2020</td>
<td>T2.2 to T22</td>
<td>2 m / 6'7"</td>
<td>183 mm / 7.2"</td>
<td>114 mm / 4.5"</td>
<td>tbd</td>
<td>6.28°</td>
<td>4.76°</td>
</tr>
</tbody>
</table>

¹ Close focus distance is measured from the image plane

² Front to PL mount flange

³ Horizontal angle of view for a full-frame camera (aspect ratio 1:1.5, dimensions 36 mm x 24 mm / 1.42" x 0.94")

⁴ Horizontal angle of view for an ANS Super 35 Silent camera (aspect ratio 1:1.33, dimensions 24.9 mm x 18.7 mm / 0.98" x 0.74")
Beautiful look. Full control.
ZEISS Supreme Prime Radiance Lenses
Cinematographer Rodrigo Prieto on the set of “RRR”.
Photo: Jeff Berlin
The ZEISS Supreme Prime Radiance lenses enable cinematographers to create beautiful and consistent flares but with one key ability – control. This is made possible by our newly developed lens coating T* blue. Under regular lighting, Supreme Prime Radiance render like modern and versatile cinematography lenses. With appropriate lighting however, the lenses start to flare. Cinematographers can decide and plan when they want to create flares rather than rely on unforeseen effects. Overall, Supreme Prime Radiance are a touch warmer than Supreme Primes but still retain all the other features that one might have experienced from using the regular Supreme Prime lenses.
A new coating for a new look
T* blue

We wanted to understand what is so appealing about lens flares and the look that comes with them. We talked to cinematographers and experts, we watched countless feature films and simulations, received feedback from around the world and asked ourselves: how do we define beautiful flares? It wasn’t about reproducing this beauty; we know what causes them and how. It was more a question of deconstructing a lens flare and creating it from scratch – the ZEISS way. Once we had defined what we wanted to achieve, instead of just uncoating lens elements, we revisited our T* coating formulae and reworked them: the birth of T* blue. By that we not only made sure that the resulting flares can be planned and reproduced but were also able to maintain contrast and avoid transmission loss that one normally experiences with uncoated lens elements.
Complementing the Supreme lens system
ZEISS Supreme Prime Radiance lenses

ZEISS Supreme Prime Radiance lenses come as a seven-lens set: 21 mm, 25 mm, 29 mm, 35 mm, 50 mm, 85 mm and 100 mm – all T1.5. Although being slightly warmer than regular Supreme Primes, they pair very well with them. That’s why we chose to go without the more extreme focal lengths on both ends of the range that the regular Supremes offer. Just mix and match as you see fit.

In addition to their controlled flare behavior and warmer touch, they retain all the well-known Supreme Prime features: an image circle of 46.3 mm to cover full frame sensors and beyond and a small front diameter of 95 mm with standardized positioning of the focus and iris rings on all lenses. Despite this, they are compact and lightweight and focus smoothly making it easy for you.
Technical Data

<table>
<thead>
<tr>
<th>Supreme Prime Radiance</th>
<th>Release</th>
<th>Aperture</th>
<th>Close Focus¹</th>
<th>Length²</th>
<th>Front diameter</th>
<th>Weight</th>
<th>Horizontal Angle of View</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 mm T1.5</td>
<td>April 2020</td>
<td>T1.5 to T22</td>
<td>0.35 m / 13.7”</td>
<td>119 mm / 4.7”</td>
<td>95 mm / 3.7”</td>
<td>1.5 kg / 3.3 lbs</td>
<td>79.5°</td>
</tr>
<tr>
<td>25 mm T1.5</td>
<td>April 2020</td>
<td>T1.5 to T22</td>
<td>0.26 m / 10”</td>
<td>119 mm / 4.7”</td>
<td>95 mm / 3.7”</td>
<td>1.42 kg / 3.13 lbs</td>
<td>70.8°</td>
</tr>
<tr>
<td>29 mm T1.5</td>
<td>April 2020</td>
<td>T1.5 to T22</td>
<td>0.33 m / 13”</td>
<td>121 mm / 4.8”</td>
<td>95 mm / 3.7”</td>
<td>1.61 kg / 3.55 lbs</td>
<td>64°</td>
</tr>
<tr>
<td>35 mm T1.5</td>
<td>April 2020</td>
<td>T1.5 to T22</td>
<td>0.32 m / 13”</td>
<td>119 mm / 4.7”</td>
<td>95 mm / 3.7”</td>
<td>1.40 kg / 3.09 lbs</td>
<td>55°</td>
</tr>
<tr>
<td>50 mm T1.5</td>
<td>April 2020</td>
<td>T1.5 to T22</td>
<td>0.45 m / 18”</td>
<td>119 mm / 4.7”</td>
<td>95 mm / 3.7”</td>
<td>1.22 kg / 2.69 lbs</td>
<td>39°</td>
</tr>
<tr>
<td>85 mm T1.5</td>
<td>April 2020</td>
<td>T1.5 to T22</td>
<td>0.84 m / 2’9”</td>
<td>119 mm / 4.7”</td>
<td>95 mm / 3.7”</td>
<td>1.42 kg / 3.13 lbs</td>
<td>24°</td>
</tr>
<tr>
<td>100 mm T1.5</td>
<td>April 2020</td>
<td>T1.5 to T22</td>
<td>1.1 m / 3’9”</td>
<td>119 mm / 4.7”</td>
<td>95 mm / 3.7”</td>
<td>1.7 kg / 3.74 lbs</td>
<td>20.4°</td>
</tr>
</tbody>
</table>

¹ Close focus distance is measured from the image plane
² Front to PL mount flange
³ Horizontal angle of view for a full-frame camera (aspect ratio 1:1.5, dimensions 36 mm x 24 mm / 1.42” x 0.94”)
⁴ Horizontal angle of view for an ANSI Super 35 Silent camera (aspect ratio 1:1.33, dimensions 24.9 mm x 18.7 mm / 0.98” x 0.74”)

1. Close focus distance is measured from the image plane.
2. Front to PL mount flange.
3. Horizontal angle of view for a full-frame camera (aspect ratio 1:1.5, dimensions 36 mm x 24 mm / 1.42” x 0.94”).
4. Horizontal angle of view for an ANSI Super 35 Silent camera (aspect ratio 1:1.33, dimensions 24.9 mm x 18.7 mm / 0.98” x 0.74”).
Focal length finder for large format shooters
Quick comparison table: Super 35 – Large Format

When you’re used to shooting Super 35, understanding large format sensors and lenses can be confusing. We’ve put together an easy to read table that gives you an overview of a few Super 35 lenses and equivalent focal lengths that you could choose from, on selected large format cameras to get the field of view that you want to achieve – or get close to.

<table>
<thead>
<tr>
<th>Equivalent focal length of ZEISS Supreme Prime (approx.)</th>
<th>Focal length used on Super 35</th>
<th>Equivalent focal length of ZEISS Supreme Prime (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mm</td>
<td>8 mm</td>
<td>–</td>
</tr>
<tr>
<td>18 mm</td>
<td>10 mm</td>
<td>15 mm</td>
</tr>
<tr>
<td>21 mm</td>
<td>12 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>25 mm</td>
<td>14 mm</td>
<td>21 mm</td>
</tr>
<tr>
<td>29 mm</td>
<td>16 mm</td>
<td>25 mm</td>
</tr>
<tr>
<td>29 mm</td>
<td>18 mm</td>
<td>29 mm</td>
</tr>
<tr>
<td>35 mm</td>
<td>20 mm</td>
<td>29 mm</td>
</tr>
<tr>
<td>35 mm</td>
<td>24 mm</td>
<td>35 mm</td>
</tr>
<tr>
<td>50 mm</td>
<td>32 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>65 mm</td>
<td>40 mm</td>
<td>65 mm</td>
</tr>
<tr>
<td>85 mm</td>
<td>50 mm</td>
<td>85 mm</td>
</tr>
<tr>
<td>100 mm</td>
<td>65 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>150 mm</td>
<td>85 mm</td>
<td>135 mm</td>
</tr>
<tr>
<td>200 mm</td>
<td>100 mm</td>
<td>150 mm</td>
</tr>
<tr>
<td>–</td>
<td>135 mm</td>
<td>200 mm</td>
</tr>
</tbody>
</table>

ZEISS SP, CZ.2 and CP.3 coverage

RED MONSTRO 8K VV
40.96 x 21.60
Crop factor: 1.72

35FF+ (dgnl: 46.31)

ZEISS LWZ.3 coverage

Super 35 (ARRI ALEXA)
23.76 x 17.82
(dgnl: 29.70)

ZEISS SP, CZ.2 and CP.3 coverage

ARRI ALEXA (Mini) LF Open Gate Mode / 4.5K
36.70 x 25.54
Crop factor: 1.54

35FF+ (dgnl: 44.71)

SONY VENICE 6K
36.20 x 24.10
Crop factor: 1.50

35FF (dgnl: 43.50)

Reading example: to match the field of view of 40 mm on Super 35, you choose 65 mm on 35FF, e.g. SONY VENICE 6K (40 mm x crop factor 1.50 = 65 mm).
Ultimate flexibility

Interchangeable Mount System

The ZEISS Supreme Prime and Supreme Prime Radiance lenses are equipped with an easy-to-operate, interchangeable mount system. It enables a quick change from PL-mount to LPL-mount. This proven feature offers tremendous flexibility and is a future-proof investment in today’s rapidly changing camera market. Both mounts have an electrical interface for transferring ZEISS eXtended Data to the camera.

User Interchangeable Lens Mounts

PL-mount

for ZEISS eXtended Data

ARRI* LPL-mount

for ZEISS eXtended Data

Allows a mix of professional cine cameras, for maximum flexibility on set

- No loss of image quality due to adapter solutions
- Two different mounts available (PL and LPL)

ARRI is a registered trademark of Arnold & Richter Cine Technik GmbH & Co Betriebs KG
Shot on ZEISS Supreme Prime

Numerous feature films, TV dramas, TV shows, commercials, music videos and other projects are shot with ZEISS Supreme Prime lenses every day. And we want you to know what happens with Supreme Prime lenses around the world. That’s why we’ve curated a playlist with trailers and full projects for you to find out more about how Supreme Primes are used – be it in America, Europe, Asia or elsewhere. Of course, we will continually update this playlist. Feel free to watch and share: zeiss.ly/shotonsp
ZEISS Cinema Showroom
Experience everything ZEISS Cine in one place

ZEISS is focused on supporting the cinematography community. That’s why we created a state-of-the-art Cinema Lens Demo Center in Sherman Oaks, California, complete with a showcase of cinema lenses, a camera prep area, a lens projection bay, lounge and a 4K HDR theater. We book appointments with cinematographers who wish to experience the finest that ZEISS has to offer.

We welcome cinematographers to come and check out the latest in lens and lens technology offered by ZEISS. No matter the size of the production, ZEISS has the right lens to bring your vision to life.

For more information, or to schedule an appointment:

ZEISS Cine Showroom
15260 Ventura Boulevard, Suite 820
Sherman Oaks, CA 91403
+1 818-582-4910
cineshowroomla@zeiss.com
Made in Germany
Manufacturing ZEISS Cinematography lenses

ZEISS Cinematography lenses are designed and manufactured at ZEISS headquarters in Oberkochen, Germany. The lenses are assembled manually and engraved with individually calibrated scales. They have to meet the highest quality requirements and thus are produced with narrow tolerances. Before they leave the factory, every lens goes through a strict final quality and cleanliness check to ensure the unrivalled quality of these ZEISS products.

Our engineers develop all ZEISS Cinematography lenses with the goal of meeting the most demanding requirements in terms of optical results, ergonomics and durability.
While the cinematographer pays attention to every detail of the image to tell the story, ZEISS pays attention to every detail of manufacturing lenses so that they support the cinematographer in bringing these stories to life. With more than fifty years of experience in cinematography lenses the ZEISS brand is known for quality and reliability, and we put all our passion into crafting optics that serve the artistic pursuits of cinematographers.

In its long history, ZEISS has created some of the most pioneering products the industry has ever seen: The early ZEISS Super Speeds that are still among the most-beloved cinematography lenses out there. The ARRI/ZEISS Ultra Primes, which have come to be known as work horses in the industry.

With the invention of the first anastigmatic lens with distortion-free imaging (later: Protar®) by Paul Rudolph, ZEISS launches a new era of camera lens development:

ZEISS creates the world’s fastest lens for NASA – the Planar 50 mm f/0.7. This lens was then used by Stanley Kubrick in 1975 to shoot a famous scene from Barry Lyndon that was only lit with candle light.

ZEISS Super Speed MK I – First consistent cinema- tography lens set with T1.3.

ZEISS Super Speed MK II

Oscar for Super Speed Lenses Category Science and Engineering

ARRI/ZEISS Ultra Prime – First 16 cinematography lenses set with consistent high performance.

ZEISS Variable Prime – First cinematography zooms with the imaging performance of primes.

ZEISS Vario Sonar 10-100 mm

Arriflex/Zeiss Standard Lenses

Arriflex/Zeiss Macro

ZEISS Vario Sonar 10-100 mm

ZEISS Super Speed MK I – First consistent cinematography lens set with T1.3.

ZEISS Super Speed MK II

Alexander Smakula develops anti-reflection coating for glass surfaces (Carl Zeiss T-coating). These provide the optical designer with totally new possibilities for the development of multi-element lenses.
The ARRI/ZEISS Master Prime and ARRI/ZEISS Master Anamorphic lens series, which are the products of engineering excellence. And eXtended Data technology which bridges the gap between production and post-production – an absolute must in modern filmmaking.