Comparison of Open Neural Network Exchange (ONNX) and TensorFlow based inferences for the B-scan of interest algorithm

Hugang Ren, PhD¹; Stefan Duca, MS²; Neil D'Souza, MS¹ ¹Carl Zeiss Meditec, Inc., Dublin, CA, USA; ²Carl Zeiss Meditec AG, Munich, Germany

PURPOSE

- B-scan of interest is a deep learning-based algorithm that aims to improve workflow efficiency for doctors during OCT data review. [1, 2, 3]
- Improving the inference performance can further enhance the user experience and reduce the computation cost.
- ONNX and TensorFlow are two deep learning inference engines. In this study, we compared the inference performance of ONNX and TensorFlow for the B-scan of interest algorithm.

METHODS

- A ResNet-50 neural network was trained using 76,544 OCT B-scans extracted from 598 macular cubes (512x128) acquired from 598 subjects with CIRRUS[™] HD-OCT 5000 (ZEISS, Dublin, CA). The trained neural network was then frozen and saved as a protobuf (pb) file for TensorFlow and an onnx file for ONNX.
- TensorFlow 1.13.1 with CUDA 10.0 and cuDNN 7.4 were used for TensorFlow inference. ONNX 1.12 with CUDA 11.4 and cuDNN 8.2.2 were used for ONNX inference. Intel(R) Xeon^(R) CPU E5-1620 v3 with 32GB memory was used for CPU based inference and NVIDIA P5000 GPU with 16GB memory was used for GPU based inference.
- The inference performance was assessed using a .NET (C#) based application for both ONNX and TensorFlow.
- To test the inference performance, 25,600 independent B-scans based on 200 macular cubes acquired from 200 subjects at 3 different clinical sites were used as the test set.
- Table 1 shows the detailed information of data used for training and testing and Figure 1 shows the methods on how the comparison was performed.

Inference Performance of ONNX vs TensorFlow for the B-scan of Interest Algorithm

both CPU and GPU

Mode	TensorFlow (seconds)	ONNX (seconds)	Difference (seconds)	Improvement Percentage
CPU	$8.99 {\pm} 0.09$	3.57±0.15	5.42 ± 0.17	60.29%
GPU	$0.55 {\pm} 0.03$	0.35±0.03	$0.20{\pm}0.03$	36.36%

of interest algorithm.

Email: hugang.ren@zeiss.com

Volume scans	B-scans for training & validation	B-scans for training	B-scans for validation	Subjects for testing	B-scans for testing				
598	76,544	61,058	15,338	200	25,600				
el training and testing.									
File		1							
		TensorFlow		CPU	CPU				
				GPI	J				
x File				<mark>⊘</mark> nvidia. CUDA.	cuDNN				

Figure 1. Flowchart comparing ONNX and Tensorflow inference performance running on

ONNX

Table 2. Performance comparison of ONNX and TensorFlow based inferences for the B-scan

RESULTS

- scans were identical between TensorFlow and ONNX inferences.
- In CPU mode, the average inference execution times of one macular cube for TensorFlow and ONNX were 8.99±0.09 and 3.57±0.15 seconds respectively. The average difference was 5.42±0.17 seconds and the inference execution time was improved by 60.29%.
- In GPU mode, the average inference execution times of one macular cube for TensorFlow and ONNX were 0.55±0.03 and 0.35±0.03 seconds respectively. The average difference was 0.20±0.03 seconds and the inference execution time was improved by 36.36%.
- Table 2 shows the comparison of the results.

CONCLUSIONS

- ONNX is an open format built to represent machine learning models and support machine learning interoperability.
- In this study, we demonstrated that ONNX can improve CPU and GPU modes.
- Future study using latest TensorFlow version can be performed to further compare the inference performance of the two inference engines.

REFERENCES

- [1] Ren et al., *IOVS* 2020; 61(7):1635.
- [2] Yu et al., IOVS 2020; 61(9): PB0085.

Poster #213 - C0050

• In both CPU and GPU modes, the binary (0-normal, 1-Bscan of interest) prediction results for all 25,600 OCT B-

the inference execution time of the B-scan of interest algorithm while maintaining the same accuracy in both

[3] Darvishzadeh-Varcheie et al., *IOVS* 2021; 62(8):2450.