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• Most frequently, machine learning (ML) engineering
focuses on improvements based on model architecture,
optimization or learning strategies.

• In contrast, we tune the underlying data by using
domain knowledge and exploiting data characteristics to
improve optic nerve head (ONH) segmentation and
localization.

METHODS

RESULTS

CONCLUSIONS

• We exploit the evidence-based area of possible ONH
locations by cropping the input images from 256×256
pixels to the central 96×256 pixels region and feed
those images to a standard U-Net.

• To evaluate the general contribution of the data-centric
approach to an improved performance, model training
is repeated with the binary cross entropy loss and the
Tversky loss.

• The Dice's coefficient (DC) and the Euclidean distance
(ED) are calculated to evaluate the ONH segmentation
performance and the localization performance of the
model, respectively.

• The model was trained on 100, validated on 10 and
tested on 10 en face projections from volumetric 60
degree widefield swept-source optical coherence
tomography (SS-OCT) scans acquired with a 1.7 MHz
prototype OCT device.

• For both loss functions, compared to training on non-
cropped data, with the data-centric approach, mean DC
increased and the mean ED decreased. Corresponding
quantitative evaluation results are shown in Table 1.

• Results demonstrate that the spatial restriction of the
input images improves ONH segmentation and
localization and is independent of the utilized loss
functions.

• The results suggest that focusing not only on model
architecture and optimization strategies but also on
data engineering can improve the overall ML model
performance in any medical imaging domain.
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PURPOSE

Figure 3. Spatial distribution of ONH location errors in x- and y-
direction based on automated ONH segmentations on test set
samples from a U-Net trained on the non-cropped 256×256
images or on images cropped to the central 96×256 pixels region
using the cross entropy loss or the Tversky loss function.

Figure 2. Qualitative ONH segmentation results on test set samples for a U-Net trained on the non-cropped 256×256 images or on
images cropped to the central 96×256 pixels region using the cross entropy loss or the Tversky loss function.
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256×256 (baseline) 96×256

Image
input

Loss 
function

Average 
precision

Dice’s 
coefficient

Euclidean 
distance

256×256 CL 0.0073 0.0 -

96×256 CL 0.9447 0.8615 2.70

256×256 TL 0.8291 0.8521 8.79

96×256 TL 0.8705 0.9154 1.27

Table 1. Quantitative evaluation results for a U-Net trained on
non-cropped 256×256 images or on images cropped to the
central 96×256 pixels region using the cross entropy loss (CL)
or the Tversky loss (TL) function.

Figure 4. Precision-recall curves for models with 256×256 pixel
inputs or with 96×256 pixel inputs. Corresponding average precision
values are given in parenthesis.
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Figure 1. Data-centric deep learning approach


