Performance comparison of macular thickness generated from a low-cost OCT with a commercial OCT system

Niranchana Manivannan, PhD; Homayoun Bagherinia, PhD; Mahsa Darvishzadeh Varcheie, PhD; Luisa Ramirez, AS; Ali Fard, PhD Carl Zeiss Meditec, Inc., Dublin, CA, USA

PURPOSE

- Macular Thickness Analysis (MTA) is commonly used for diagnosing and monitoring patients.
- Technology constraints of low-cost OCT can result in limited image quality and can affect the MTA when compared to commercial OCT systems.
- The purpose of this study is to compare the performance of MTA generated using an automated scan selection method from a low-cost OCT with MTA generated from a commercial OCT system.

METHODS

- In this prospective study a low-cost OCT prototype system (ZEISS, Dublin, CA) and a commercial CIRRUS[™] HD-OCT 5000 (ZEISS, Dublin, CA) were used to image 55 eyes with age-related macular degeneration.
- For each eye, operator acquired one 6 x 6 mm OCT volume with 512 x 128 A-scans from the commercial OCT system.
- Subjects were asked to self-acquire three 5.78 x 7 mm OCT volumes with 512 x128 A-scans from the low-cost OCT.
- For both commercial and low-cost OCT volumes, MTA was calculated over 5.78 x 5.78 mm area.
- The thickness maps from both systems were registered and the ETDRS grids were centered on the scans.
- An automated scan selection method was used to select the number of scans to generate thickness maps for lowcost OCT [1].
- Bland-Altman and regression analyses were used to compare the MTA from low-cost OCT with the commercial OCT.

Figure 1. Macular thickness (MT) map from low-cost and commercial OCT for two subjects

ETDRS sector
Central
Inner Nasal
Inner Superior
Inner Temporal
Inner Inferior
Outer Nasal
Outer Superior
Outer Temporal
Outer Inferior

The Macular Thickness Analysis generated using automated scan selection method from low-cost OCT system shows good agreement with commercial OCT

R ² Regression slope and intercept Mean difference (μm) 0.83 0.90X + 30.60 4.6 0.92 0.98X+2.87 -4.1
0.92 0.98X+2.87 -4.1
0.97 1.03X-13.00 -5.2
0.93 0.99X+1.48 -2.8
0.96 1.00X-1.42 -0.2
0.94 0.99X+4.71 1.0
0.95 1.02X-10.40 -5.1
0.91 1.01X+3.11 6.0
0.97 0.97X+3.74 -5.5

Table 1. Bland-Altman and regression analyses of MT between low-cost and commercial OCT

RESULTS

- The summary of results from automated scan selection method in the 55 eyes are as follows: in 1, 12 and 42 volumes, MTA was calculated using
 - 3 of 3,
 - 2 of 3 and
 - 1 of 3 acquisitions, respectively.
- Figure 1 shows examples of both low-cost OCT and commercial OCT thickness maps.
- Bland-Altman and regression analyses from various ETDRS sectors are shown in Table 1.
- The mean difference between low-cost and commercial OCT ranges from -5.5 to 4.6 µm.
- The coefficient of determination (R²) ranges from 0.83 to 0.97 in the ETDRS sectors showing good correlation.

CONCLUSIONS

- The results from this study suggest that the MTA results correlation with MTA results from commercial OCT.
- This results suggests that the automated scan selection OCT system.

REFERENCES

[1] Fard, Ali, et al. "Robust macula thickness analysis using low-cost OCT." Investigative Ophthalmology & Visual Science 63.7 (2022).

Disclosures: NM (E), HB (E), MV (E), LR (E), AF (E) - Carl Zeiss Meditec, Inc.

Email: niranchana.manivannan@zeiss.com

Poster #324 - C0161

from various ETDRS sectors of low-cost OCT show good

method may be effective in generating MTA in low-cost

