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Leading academic and industrial researchers in the world rely 

on 3D X-ray microscopy as an effective non-destructive imaging 

technique to produce remarkable scientific insights. To obtain 

useful 3D volumetric data from X-ray microscopy, 2D projections 

first need to be interpreted and combined using tomographic 

image reconstruction algorithms. Such reconstruction technologies 

typically have certain requirements, assumptions, advantages 

and drawbacks which make them specifically well suited towards 

particular applications. Many different techniques are available, 

which enables incremental performance to be extracted from 

datasets but may not be universally applicable across all sample 

classes, applications or usage modes. The ZEISS Advanced 

Reconstruction Toolbox from ZEISS is aimed at making these 

techniques available to scientists, engineers and technicians, 

improving performance of 3D X-ray microscopes in their specific 

application and use cases. The performance improvements that 

can be achieved with the advanced reconstruction toolbox can 

be in terms of throughput, image quality, field of view, and 

ease-of-use. This toolbox acts as a platform to launch the 

next series of ground-breaking improving.

One of the principal challenges when applying X-ray microscopy 

to solve industrial problems is a compromise one needs to 

make between imaging throughput and image quality. High 

resolution 3D X-ray microtomography acquisition times can be 

on the order of several hours, which can lead to challenging 

return-on-investment (ROI) calculations when weighing the 

relative advantage of high accuracy 3D analysis with cheaper, less 

capable analytical techniques. To tackle this issue, optimization 

of each step in the production of the actionable information 

required by these industrial users is required. For 3D X-ray 

microtomography, these steps typically consist of sample 

mounting, scan setup, 2D-projection image acquisition,  

2D to 3D image reconstruction, image post-processing and 

segmentation, and final analysis. In repetitive workflows  

(where many similar samples are run sequentially and image 

processing and analysis workflows are  well understood), the 

slowest step is image acquisition and subsequent reconstruction. 

Even in academic environments where ROI is less of a concern, 

in situ analyses can require very high absolute temporal 

resolutions when performing 4D (time-resolved) scanning. 

Beyond this require-ment, the analysis of subtle chemical or 

compositional differences, which may only exhibit very slight 

greyscale or textural contrasts, requires extremely low noise levels 

to accurately segment and classify. This means that even when 

acquisition time is less of a concern, image quality may require  

the use of advanced reconstruction technologies.

In this technology note, we will review a range of different 

reconstruction technologies, specifically analytical, iterative and 

deep learning-based reconstructions that are launched as part of 

the ZEISS Advanced Reconstruction Toolbox. These technologies are 

targeted to enhance throughput and image quality of ZEISS Xradia 

3D X-ray microscopes. In analytical reconstruction (of which by far 

the most common type is “filtered back projection” for cone-beam 

based systems, typically known as Feldkamp-Davis-Kress algorithm 

or FDK [1]) , the entire volume is reconstructed in a single step. 

While this has advantages in terms of computational simplicity, 

it is prone to the impacts of both artifacts and noise, requiring 

either a large number of 2D projections and/or long exposure 

times, both of which result in reduced imaging throughput. 
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Figure 1  Filtered back projection. Projection data is filtered using a frequency  
domain filter, reducing image blurring.

On the cover  Smartphone camera module images from ZEISS Xradia Versa 3D X-ray microscope. (1) Capture from 3D image. 

(2) 2D projection, standard reconstruction. (3) 2D projection with ZEISS OptiRecon reconstruction, acquired in ¼ the time with superior image quality.
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During iterative reconstruction, a volume is progressively created 

over multiple iterations, and a model set of projections from this 

volume is compared with the real set of projections, minimizing the 

difference between the two, and thereby minimizing the impact of 

artifacts and noise in the final reconstruction. Deep learning-based 

reconstruction is a new technology where trained neural networks 

are introduced between the projections and the final reconstructed 

volume. This has the effect of drastically denoising the data,  

as well as reducing any reconstruction associated artifacts.  

Filtered Back Projection (a.k.a Feldkamp-Davis-Kress 

reconstruction, or FDK)

In order to reconstruct a 3D volume from a series of sequentially 

acquired 2D X-ray projections, traditionally FDK filtered back is 

used in cone beam CT geometric reconstruction. In this technique, 

projections are weighted and filtered before being distributed  

across image volume along all their projection directions (Figure 1).  

If many projections, ideally thousands, are used, an accurate 

representation of the 3D volume of the sample is achieved.

This technique works well with many views, however, relies 

on the assumption that the total projection dataset contains 

sufficient projections spaced at small angular intervals (the data 

is “well sampled”) and does not contain significant noise. 

These assumptions are frequently broken in the interest of 

improving throughput by reducing total tomography acquisition 

time (e.g., for increasing temporal resolution in in situ experiments 

or, during industrial applications, to reduce the effective cost per 

sample), leading to errors in the reconstructed image (Figure 2). 

This, in turn, leads to errors in segmentation and any resulting 

analysis from the data.

Figure 2  3D reconstructed volume (using FDK algorithm) of sandstone sample using 
1600 projections, showing few artifacts, and 400 projections, showing much greater 
impact of sampling artifacts and noise. The darkest phase in this image represents 
the pore space of the rock and the light phase represents the grains in the rock.

Figure 3  Statistical Iterative Reconstruction. The model dataset is continually compared with the real projection dataset, and the difference between them back projected, 

gradually creating a 3D model that closely resembles the real 3D sample geometry
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Iterative Reconstruction

While filtered back projection is the most commonly used 

reconstruction technique, statistical iterative reconstruction 

(SIR) is a new technology allowing for many of the limitations 

encountered using filtered back projection to be overcome [2]. 

In this technology, a 3D model of the sample is gradually built up 

over the course of many iterations. At each iteration this 3D model 

is forward-projected, creating an estimated set of projections, 

which is compared to the original (real) dataset. The difference 

between the real projection dataset and the estimated projection 

dataset is then back-projected and added to the volume, reducing 

the difference between the 3D model and the sample. When the  

3D model is subsequently forward-projected the difference between 

the real projection dataset and the estimated (forward-projected) 

dataset is reduced (Figure 3). When some stopping criterion is 

met (e.g., a certain difference between the real and the estimated 

projection datasets, or a fixed total number of iterations), the final 

reconstructed volume is reported.

As the data is not ramp filtered, the resulting image is less 

susceptible to the sampling artifacts of traditional filtered 

back projection algorithms. Also, as any change to the 

reconstructed volume is consistently and continually checked 

against the real projection dataset, powerful denoising 

algorithms (called “regularization”) and noise weighting models 

can be introduced to reduce the impact of noise in the final 

reconstruction with an edge toward preserving performance 

significantly better than FDK (Figure 4).

Three of the major challenges of iterative reconstruction are 

computational cost, parameter selection and sample specificity. 

As iterative reconstruction consists of multiple pairs of forward 

and backward projections, substantial computational resources 

are required than for traditional filtered back projection. 

ZEISS OptiRecon solves this challenge relying on a highly 

efficient multi-GPU based implementation and dedicated 

high performance workstation. This implementation can 

reconstruct a one-billion-voxel 3D image in less than 5 minutes.

The second major challenge faced by iterative reconstruction 

is parameter optimization, particularly for the edge-preserving 

denoising regularization algorithm, which can have many variables 

to optimize. This typically requires substantial expertise of the 

operator to achieve useful results. To solve this challenge,  

ZEISS OptiRecon has implemented a user friendly two-parameter 

optimization interface whereby the edge preservation parameter 

is determined by an initial unconstrained reconstruction of a small

characteristic portion of the sample. The smoothing parameter 

is then determined for a sequence of displayed values, ensuring 

neither over-smoothing nor under-smoothing of the final recon-

structed dataset. 

The third major challenge is sample specificity due to the 

assumptions made during reconstruction. As shown below, 

ZEISS OptiRecon demonstrated superior results compared to FDK 

for typical samples in oil and gas applications that can be described 

as “sparse,” meaning the features are relatively large compared 

to the voxel size. ZEISS OptiRecon, launched as part of the ZEISS 

Advanced Reconstruction Toolbox, expands this superior iterative 

reconstruction capability to a broader set of sample classes.

Results & Examples

In order to quantitatively compare the performance of differing 

reconstruction techniques, we evaluate (1) signal-to-noise ratios 

(SNR) to measure the impact of noise, and (2) edge sharpness 

profiling, where we assume an analytical profile for a particular 

phase interface with a specified characteristic length scale, 

to measure the impact of reconstruction method on image 

Figure 4  Iterative reconstruction (left) vs. FDK reconstruction at reduced number  
of projections (400). The use of iterative reconstruction techniques greatly reduces 
the impact of noise and sampling artifacts on the resulting reconstructed data,  
while maintaining image sharpness.

400 Projections Iterative 400 Projections FDK
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Table 1  Quantitative comparison of signal-to-noise and edge sharpness for iterative 
reconstruction vs. FDK reconstruction. Edge sharpness is measured in voxels, so a 
smaller number denotes a sharper edge.

Figure 5  Simulations through the same volume reconstructed using filtered 
back projection using 1,600 projections and iterative reconstruction using 400 
projections. (A) Velocity field, shown through the FDK reconstructed image. (B) 
Permeability tensor components (in Darcy units) (C) Simulated capillary pressure 
curve.

sharpness. SNR is calculated by measuring the mean (signal) 

and standard deviation (noise) of the gray scale values in two 

regions of interest representing the two phases of grain and pore. 

SNR is then given by the difference of the mean values divided 

by the average of the standard deviations. Edge sharpness is 

determined by fitting a logistics function to a gray scale line 

profile across the edge, and the edge sharpness in voxels is 

given by the width (in voxels, smaller means sharper) of the 

transition of the fitted line (inverse of the parameter k of the 

logistics function). When using these metrics on the dataset 

shown in Figure 4, iterative reconstruction techniques give 

a reconstructed SNR value approximately three times higher 

than when using FDK (with values of 15.4 vs. 5.55 for iterative 

reconstruction and FDK respectively). This was achieved while 

decreasing the characteristic edge length (representing edge 

width or image sharpness) by approximately a factor of 1/3 

(Table 1). It can also be shown (not presented here) that 

applying edge-preserving noise reduction filters to FDK 

reconstructions with few projections does not achieve the 

same level of image quality improvements and artifact 

reduction as the iterative algorithm does.

One of the primary areas of application for this technology 

is that of digital rock physics whereby the pore space of 

rock cores from petroleum reservoirs are imaged using X-ray 

microscopy and segmented. This segmentation is then used 

as the input to a pore scale computational model, the results 

of which are used to inform and populate the reservoir models 

that make predictions about petroleum production and reservoir 

performance. One of the biggest challenges associated with 

this workflow, however, is cost and, by extension, acquisition 

time. The use of iterative reconstruction will let researchers 

and service companies reduce acquisition time and thus the 

“cost per sample” of this workflow. 

To characterize the impact of reconstruction on resulting 

petrophysical properties, permeability and mercury intrusion 

capillary pressure was simulated through the pore network 

of the sample shown in Figure 4, reconstructed using both 

FDK (with 1,600 projections) and iterative reconstruction 

(with 400 projections). These reconstructions were then 

segmented using Otsu automated selection [3] and 

	 Iterative Reconstruction 	 FDK
	 (ZEISS OptiRecon)	 Reconstruction

Signal to Noise Ratio	 15.4	 5.6
	

Edge sharpness (voxels) 	 0.31	 0.45
				  

A

C

B
	 X 	 Y 	 Z
FDK	 4.0	 3.4	 3.7
Iterative	 4.4	 3.8	 4.0
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hydraulic parameters were simulated using GeoDict 

(Math2Market GmbH), showing very little difference between 

simulations from the filtered back projection reconstruction 

and the iterative reconstruction (Figure 5). 

Iterative reconstruction also has great potential application in 

the performance of dynamic, time-resolved in situ experiments, 

as it could greatly increase their temporal resolution, reducing 

typical acquisition times from several hours down to tens of 

minutes. In the field of flow and transport porous media, this 

could allow for processes of chemical reaction (occurring over 

several hours) to be examined with a much greater precision 

than previously possible.

Finally, iterative reconstruction may open up an exciting new 

area of application for X-ray microscopy: liberation analysis 

within the comminution process in the mining industry. During 

comminution, the process of reducing a mineral ore into its 

constituent mineral grains for subsequent extraction, the 

“liberation” of a particle, is the proportion of that particle 

made of the mineral of interest (rather than other minerals, 

forming the rest of the “gangue” mineralogy of the rock). 

This analysis is traditionally done in 2D using SEM-based 

automated mineralogy. X-ray microscopy, however, has 

the potential of both greatly speeding up and removing the 

stereological biases inherent in 2D analysis if it can be delivered 

at high image quality with a fast (and economical) acquisition 

time. When examining such mineralogy feed samples, a great 

improvement in image quality can be seen when comparing 

traditional filtered back projection and iterative reconstruction 

techniques (Figure 6).

DeepRecon

An extremely exciting new area of imaging technologies is 

the integration of deep learning-based techniques into the 

image reconstruction workflow. The last ten years have seen a 

transformation in a wide array of advanced statistical inference 

techniques broadly grouped together under the umbrella of 

“machine learning.” While these technologies have transformed 

sectors as wide as medical diagnostics to stock market analysis, 

their practical application to X-ray microscopy is still in its early 

stages. During visual examination, the brain of a trained scientist, 

engineer, or analyst act to integrate features across multiple 

scales, removing noise and artifacts to extract features and objects 

of interest. This has traditionally been extremely challenging to 

capture in a computational form as it involves much more than 

local greyscale, integrating local and non-local greyscale, gradient 

and textural features.

Most of machine learning applications to date have been focused 

on post-processing for image segmentation, feature classification, 

or object recognition [4, 5]. It has not been integrated deeply inside 

an instrumental workflow, especially in one as complex as 3D 

X-ray microscopy. The dual “projection-to-image volume” nature of 

X-ray microscopy presents specific challenges to machine learning 

workflows, as the training of networks requires highly consistent 

spatially registered datasets with consistent scaling and noise 

profiles. The line-integral projection process from X-ray source 

to detector incorporates a range of inherent non-linearities that 

make the creation of well-matched datasets for network training 

extremely challenging. This challenge is exacerbated by the range 

of standard image corrections frequently applied to X-ray data 

(such as center shift offset or beam hardening corrections), which 

can further effect scaling or data matching between pairs.

ZEISS DeepRecon is an integrated package of software that 

allows for this process of image improvement, interpretation, 

and retrieval to be performed using a trained neural network, 

allowing for high quality reconstructed data to be achieved 

despite rapid acquisitions using a small number of projections 

or short exposures (Figure 7).

Figure 6  Iterative (left) and FDK (right) reconstruction of a mining sample from  
400 projections.
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These techniques allow for extreme throughput improvements, 

potentially up to 10X improvement over standard filtered back 

projection techniques (Figure 8). These techniques are particularly 

useful for applications and industries where repetitive, similar 

samples are frequently imaged with 3D X-ray microscopes. 

This is because a single model can be used across most of the 

samples imaged, rather than requiring frequent time-expensive 

model retraining.

Reconstructed 3D Volume

Input
Layer

Hidden
Layer 1

Hidden
Layer N

Output
Layer

Raw 2D Projection Data

Low noise
High image quality

Low number
of projections /
exposure time

Deep Learning-based Reconstruction (DeepRecon)

Figure 7  By integrating a pre-trained neural network between detected raw projection data and reconstructed data, high quality reconstructions can be achieved 

with low numbers of projections, or short exposures.

Standard Reconstruction Standard Reconstruction DeepRecon

~9X Throughput Improvement
at improved image quality

Figure 8  Extreme throughput improvements can be achieved using DeepRecon. In this example of a porous rock sample, an effective ~9X improvement in throughput 

even further enhancing image quality is observed. The images were obtained with ZEISS Xradia 620 Versa.
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OptiRecon

Conclusions & Future Views

Reconstruction technologies are critical to 3D X-ray microscopy, 

and novel reconstruction methods have the potential of 

greatly enhancing the product performance of ZEISS 3D X-ray 

microscopes. The advanced reconstruction toolbox from ZEISS 

will pave a path for continuous innovations in reconstruction 

technologies that can significantly enhance the performance of 

ZEISS 3D X-ray microscopes thereby helping scientists, researchers 

and lab technicians to enrich their scientific explorations. The 

first version of ZEISS Advanced Reconstruction Toolbox consists 

of two reconstruction technologies, ZEISS OptiRecon and  

ZEISS DeepRecon, both of which are targeted to significantly 

improve the image quality or throughput of ZEISS 3D X-ray 

microscopes, providing the researcher with ultimate flexibility.

ZEISS OptiRecon is based on iterative reconstruction, which is a 

powerful technology with the potential of being transformative 

for X-ray microscopy workflows. It allows for high quality data to 

be acquired in a much-reduced period of time. This, in turn, allows 

for industrial workflows to be applied much more economically, 

at a reduced time per sample, and for academic analyses, 

particularly time resolved in situ analyses, to be performed 

at much greater temporal resolution. Iterative technologies, 

particularly their application to the big datasets produced by 

high resolution 3D X-ray microscopy, are in their infancy and 

have a great potential for future development. Here, we have 

demonstrated that OptiRecon can provide equivalent image 

quality while using only 1/4 of the number of projections, and 

therefore 1/4 of data acquisition time, e.g., for typical applications 

in oil and gas, resulting in 4X throughput improvement of the 3D 

X-ray microscope. Alternatively, OptiRecon can also be used to 

significantly enhance image quality at similar throughput as that 

of FDK reconstruction.

Figure 9  Schematic representation of performance improvement with advanced 

reconstruction technologies (DeepRecon and OptiRecon) compared to standard 

reconstruction (FDK)
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Figure 9  Smartphone camera module images from ZEISS Xradia Versa 3D X-ray microscope. ZEISS OptiRecon reconstruction demonstrates 4X throughput improvement  
with excellent image quality.
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ZEISS DeepRecon is a novel reconstruction technology that is 

based on deep learning and is targeted to improve throughput 

or image quality of ZEISS 3D X-ray microscopes for repetitive 

workflow applications. DeepRecon can provide up to 10X 

throughput improvement at similar or better image quality 

compared to standard FDK reconstruction. This technology 

uniquely harvests the hidden dependencies in big data available 

from ZEISS X-ray microscopes and provides significant artificial 

intelligence-driven throughput or image quality improvement. 

The network models can be created per sample class and can 

be tailored to precisely fit customer applications.

The algorithms discussed here could be further extended to 

include multiscale analyses (reducing the noise level of high-

resolution interior scanning) or innovative new noise reduction 

algorithms with the potential of removing noise while neither 

degrading edges nor removing small features. They could even 

be extended to include full spectral inversion, where rays are 

modelled as a range of energies, opening the door to both 

greater chemical sensitivity and the removal of the impact of 

the beam hardening artifacts associated with highly attenuating 

materials. Such improvements will extend the applicability of 

these reconstruction technologies to further extend the 

performance of ZEISS 3D X-ray microscopes.
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