ZEISS Xradia Context microCT
3D submicron-resolution X-ray microCT
with superior image quality

ZEISS Xradia Context is an easy-to-use 3D micro-computed tomographic (microCT) X-ray system for analysis of all types of electronic products. A high-density detector enables high resolution of fine details even with relatively large imaging volumes. The system features a large field of view, rapid sample mounting and alignment, a streamlined acquisition workflow and fast exposure and data reconstruction times. Context microCT is the ideal entryway into the ZEISS X-ray ecosystem, with guaranteed data quality based on the proven Xradia Versa platform, and the flexibility to be converted to an Xradia Versa X-ray microscope (XRM).

Versatile
- Analyze diverse electronic products and packages
- Visualize buried structures non-destructively in 3D for process analysis, construction analysis and failure analysis
- Enable larger fields of view and sample sizes by automated vertical stitching
- Achieve highest resolution on small samples

Superior Image Quality
- Large high-speed 6-megapixel detector with small pixel sizes maintains resolution at even relatively large fields of view
- 30 – 160 kV range enables superior contrast
- Optimized high-purity filters enhance image quality and reduce beam hardening
- Advanced drift correction for superior stability
- Dynamic hardware- and software-enabled ring artifact removal system

Easy to Use
- User-friendly Scout-and-Scan™ system for quick sample set-up and local area positioning
- Robust stage with flexible software-controlled source/detector positioning
- Recipe-based data acquisition and automated reconstruction
- Optional autoloader for continuous operation

Proven Performance
- Based on award winning ZEISS Xradia Versa XRM platform
- Field convertible to Versa XRM
ZEISS Xradia Context microCT

3D submicron-resolution X-ray microCT with superior image quality

Features and Benefits
- Visualize buried structures and defects non-destructively in 3D across a wide range of sample sizes with class-leading resolution at chosen field of view
- View unlimited virtual cross sections from any angle
- Suitable for technology development, production validation or failure analysis
- Easy to use and easy to maintain
- Superior stability and image quality
- Proven performance based on award-winning Xradia Versa platform
- Option for field conversion to Versa X-ray microscope with flat panel extension (FPX), offering both objective-based high-resolution and larger sample capability
- Offline data option to perform data acquisition and data analysis in parallel

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Resolution[^a]</td>
<td>0.95 µm</td>
</tr>
<tr>
<td>Minimum Achievable Voxel[^b] (Voxel size at sample at maximum magnification)</td>
<td>0.5 µm</td>
</tr>
<tr>
<td>Achievable Voxel at Working Distance[^b,c]</td>
<td>0.5 µm / 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>0.8 µm / 2.5 mm</td>
</tr>
<tr>
<td></td>
<td>2.5 µm / 12.5 mm</td>
</tr>
<tr>
<td></td>
<td>4.0 µm / 25 mm</td>
</tr>
<tr>
<td></td>
<td>12.1 µm / 100 mm</td>
</tr>
<tr>
<td>Tube Voltage / Power Range</td>
<td>Spot stabilized 30-160 kV / 10 W</td>
</tr>
<tr>
<td>High Speed, Large Array CMOS Flat Panel</td>
<td>3072 x 1944 pixels</td>
</tr>
<tr>
<td>Single Field of View (diameter / height)</td>
<td>140 mm / 93 mm</td>
</tr>
<tr>
<td>Maximum Field of View[^d] (diameter / height)</td>
<td>140 mm / 165 mm</td>
</tr>
</tbody>
</table>

[^a]: Spatial resolution measured with ZEISS Xradia 2D resolution target.
[^b]: Voxel is a geometric term that contributes to but does not determine resolution, and is provided here only for comparison. ZEISS specifies resolution via spatial resolution, the true overall measurement of instrument resolution.
[^c]: Working distance defined as clearance around axis of rotation. This value can be interpreted as the radius of the sample.
[^d]: Maximum Field of View uses the Vertical Stitching software feature to extend the total reconstructed volume.