
Learnings from internal initiatives
leveraging GenAI-based solutions for
unprecedented implementation efficiency
in healthcare & life sciences.

The next Level of
Software Development
in Regulated Industries
enabled by GenAI

zeiss.com/digital-innovation

Last updated: 01/2026

https://www.zeiss.com/digital-innovation/home.html

2zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW USE CASES CONSIDERATIONS SUMMARY CONCLUSION

Executive Summary

Three ZEISS Digital Innovation initiatives and results:
A Retrieval-Augmented Generation (RAG) initiative
demonstrated strong potential to reduce information search
overhead and improve user satisfaction. In a large program,
engineers reported an average of 60 minutes per day searching
across wikis and documents, with low satisfaction (2.7/5). An
Azure-based MVP – React frontend, Python/Django backend,
Microsoft Entra for secure access – grounds answers in the
program wiki and is estimated to implement in 12–16 weeks
for €200–300k, with €4–6k monthly operations. Expected
monthly savings of €15–24k translate to a conservative break-
even in about three years and an optimistic break-even near one
year; five-year ROI ranges from 80% to 520%. Success depends
on data quality, stakeholder engagement, rigorous validation
with golden questions, and alignment with privacy, security,
and works council requirements, with clear scaling paths to
additional repositories and roles.

A prototype for semi-automated document generation shows
how GenAI can compress regulatory document creation from
hours or days to minutes through chapter-by-chapter drafting
guided by templates and reference examples per document
type. Early results indicate roughly 50% automation potential
and a modeled saving of about €1 million for 2,000 documents,
while improving consistency and accelerating reviews across
project management, requirements, and quality roles. Practical
lessons include managing token limits via chapter workflows and
enforcing precise prompting. The roadmap extends coverage to
more document types, dynamic ingestion of legacy content, AI-
assisted reviews, risk assessment, automated validation, change
control, knowledge reuse, and integrations with requirements
and test systems.

An agentic workflow for unit test generation further illustrates
GenAI’s impact on quality and cost. Using a micro-agent
approach with LangChain/LangGraph, the system analyzes
existing tests, coverage, and code to propose additional cases
that close missed paths, subject to strict quality gates and
human review. Across Python, C++, and TypeScript projects,
coverage rose substantially – reaching 100% for some classes –
while senior developers accepted 85% of generated tests at
an average token cost near €0.5 per accepted test. Compared
with a similar open-source solution, the approach achieved
comparable or better coverage with about 40% fewer input
tokens, positioning it for scalable adoption in safety-critical
contexts.

Realizing these benefits at scale requires disciplined data
preparation and governance, cloud or hybrid architectures with
vector databases and secure APIs, multi-agent orchestration,
and robust GenAI/MLOps for monitoring, auditability, and drift
control. Staged rollouts with clear performance metrics – usage,
accuracy, time saved, satisfaction, and adoption – enable
systematic tuning. Beyond measurable gains in speed and
cost, GenAI elevates consistency, developer satisfaction, and
compliance readiness, ultimately accelerating time-to-market
and supporting better patient outcomes through safer, more
reliable software.

Generative AI (GenAI) is unlocking step-change efficiency in regulated software development, where various
regulations impose rigorous documentation, testing, and audit requirements. Relevant regulations and quality
frameworks commonly applied in life sciences, MedTech, and pharma/lab environments include IEC 62304 (medical
software lifecycle), the EU Medical Device Regulation (MDR), ISO 13485 (medical device QMS), GxP requirements
(e.g., GMP/GLP/GCP), FDA regulations and guidance (e.g., 21 CFR Part 11 for electronic records/signatures),
HIPAA for health data protection in the U.S., and the emerging EU AI Act. GenAI can reduce cycle time and cost
by automating language- and code-heavy tasks – while keeping full traceability and human review in the loop.
Near-term productivity gains of 10–15% of total engineering effort are achievable today, with more than 30%
attainable through strategic adoption and scaled deployment. This whitepaper examines how GenAI can enhance
software development in regulated environments, with MedTech and life sciences as primary examples, and
illustrates its impact through three concrete use cases:

https://www.zeiss.com/digital-innovation/home.html

3zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW USE CASES CONSIDERATIONS SUMMARY CONCLUSION

1. ​Introduction 4

1.1	 The Need for Innovation in Regulated Software Development	 4

1.2	What is GenAI?	 6

1.3	Relevance and Opportunity for Healthcare & Life Sciences	 6

2. Overview of GenAI Technologies	 7

2.1	Foundational Models & Techniques 7

2.2	Key Capabilities and Use Cases enabled by GenAI 8

2.3	Examples & Impact of GenAI-based Solutions 9

3. Use Cases 10

3.1	Use Case 1: Advanced Knowledge Retrieval and Preparation with Retrieval-Augmented Generation (RAG) 10

3.2	Use Case 2: Semi-Automated Document Generation 16

3.3	Use Case 3: Agentic Workflow for Test Automation 20

4. General Implementation Approach 25

4.1	Data Preparation 25

4.2	Implementation & Deployment 25

4.3	Maintenance 27

5. Special Considerations in Healthcare & Life Science 28

5.1	Data Requirements & Management 28

5.2	Regulatory & Compliance Issues 28

5.3 Ethical & Bias Concerns	 28

6. Best Practices & Guideline 29

7. Summary 30

7.1	 Expected Impact 30

7.2	Quantitative and Qualitative Benefit 30

8. Conclusion 31

Table of Contents

https://www.zeiss.com/digital-innovation/home.html

4zeiss.com/digital-innovation

IMPLEMENTATION BEST PRACTICESOVERVIEW USE CASES CONSIDERATIONS SUMMARY CONCLUSIONINTRODUCTION

1. Introduction

Medical and Life Science software development is inherently
complex and faces a multitude of challenges that inhibit
innovation and delay time to market. Strict regulatory
frameworks – such as FDA, EU MDR, ISO 13485, HIPAA &
GDPR, and GxP, 21 CFR Part 11, among other regulations,
demand rigorous validation, exhaustive documentation, and
ongoing compliance monitoring to ensure the safety, security,
and efficacy of medical applications. These requirements
often elongate development cycles and drive up costs, placing
considerable pressure on teams striving to meet both innovation
goals and regulatory expectations.

Compounding this challenge are limitations around high-
quality health data. Developers must navigate heightened
privacy concerns and data access restrictions, which hinder
the iterative development and personalization essential for

modern digital health solutions. Unlike conventional, non-critical
software, medical systems – such as electronic health records
(EHRs), clinical decision support systems (CDSS), and imaging
diagnostics – must demonstrate exceptional levels of accuracy,
security, and reliability. Failures in these systems can have life-
altering consequences, from misdiagnoses to treatment delays
or compromised patient data.

The diverse and complex workflows of clinical and laboratory
environments present significant challenges for developers, who
must create solutions that are not only robust but also adaptable
to varying user needs and technical conditions. This complexity
necessitates a strategic balance between regulatory compliance,
data governance, and agile development practices, ensuring that
innovation can thrive without compromising patient safety or
data integrity. Addressing these challenges presents a significant
opportunity: Innovation is crucial to enhance compliance,
reduce costs, and improve patient outcomes through faster,
more personalized digital healthcare solutions.

1.1 The Need for Innovation in Regulated
Software Development

Regulation Challenges

Opportunity
Innovation is crucial to enhance compliance, reduce costs, and improve patient outcomes

through faster, more personalized digital healthcare solutions.

Complex regulatory frameworks:
•	 EU MDR
•	 ISO 13485
•	 IEC 62304
•	 EU Al Act
•	 …
that require rigorous validation and extensive
documentation.

Current challenges include:
•	 High costs
•	 Slow R&D cycles
•	 …
.

https://www.zeiss.com/digital-innovation/home.html

5zeiss.com/digital-innovation

IMPLEMENTATION BEST PRACTICESOVERVIEW USE CASES CONSIDERATIONS SUMMARY CONCLUSIONINTRODUCTION

According to Bain & Company’s 2024 report “Beyond Code
Generation: More Efficient Software Development”, generative
AI (GenAI) can save 10–15% of total engineering time
today, with the potential to exceed 30% through strategic
adoption. This efficiency boost can be realized through
targeted use cases, some of which will be discussed in this
report. By leveraging GenAI in these domains, R&D teams
can simplify compliance processes, reduce time-to-market,
and unlock significant innovation potential in healthcare
technology.

*bain.com, fda.gov, fda.gov, robinwaite.com,
pmc.ncbi.nlm.nih.gov

10 – 15 %

> 30 %

Savings of engineering
time by leveraging
GenAI in software

development

with strategic
adoption

https://www.zeiss.com/digital-innovation/home.html
https://www.bain.com/insights/beyond-code-generation-more-efficient-software-development-tech-report-2024/
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.robinwaite.com/blog/top-challenges-bottlenecks-of-medical-software-development
https://pmc.ncbi.nlm.nih.gov/articles/PMC6376961/

6zeiss.com/digital-innovation

IMPLEMENTATION BEST PRACTICESOVERVIEW USE CASES CONSIDERATIONS SUMMARY CONCLUSIONINTRODUCTION

Generative AI (GenAI) represents a transformative evolution
within artificial intelligence, characterized by its ability to
create new, original content – ranging from human-like text to
detailed images, audio, and similar content like program source
code, scripts, and diagrams – by learning intricate patterns
from enormous datasets. Unlike traditional AI or conventional
machine learning, which primarily focus on recognizing patterns
and making predictions based on predefined rules or labeled
data, GenAI employs advanced deep learning architectures
such as large language models (LLMs), diffusion models and
generative adversarial networks (GANs) to generate novel
outputs that can mimic human creativity and reasoning. A
key enabler of this shift is GenAI’s ability to “understand”
and interpret vast amounts of source data in a more organic,
context-aware manner. This capability unlocks significantly
broader use cases, particularly in processing and synthesizing
large volumes of unstructured human- and machine-generated
data and information.

mckinsey.com, techtarget.com

Generative AI is rapidly emerging as a pivotal technology in
software development for Health and Life Sciences, offering
targeted capabilities that address longstanding bottlenecks
across design, development, validation, and compliance. Rather
than simply enhancing healthcare and life science workflows,
GenAI can directly impact core engineering tasks via its core
capabilities like image and text creation – especially within a
highly regulated environment.

By leveraging GenAI, R&D teams can semi-automate the
generation of regulatory documentation, which significantly
reduces the manual effort required to meet standards such as
FDA, EU MDR, GMP, ISO 13485, and GxP, 21 CFR Part 11. It
also streamlines the retrieval and summarization of complex
technical information from vast, structured and unstructured
datasets, improving knowledge management and traceability.
Furthermore, GenAI accelerates software testing cycles through
the automated generation of test cases, synthetic data, and
model-based validation scenarios – without compromising data
privacy. These use cases not only enhance productivity but also
support faster time-to-compliance, higher software reliability,
and ultimately better patient safety and outcomes.

rishabhsoft.com, arxiv.org, persistent.com, techtarget.com

1.2 What is GenAI? 1.3 Relevance and Opportunity for
Healthcare & Life Sciences

https://www.zeiss.com/digital-innovation/home.html
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai
https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://www.rishabhsoft.com/blog/generative-ai-in-healthcare
https://arxiv.org/abs/2310.00795
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
https://www.techtarget.com/healthtechanalytics/news/366590030/Generative-AI-may-bolster-digital-healthcare-software-development

7zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESUSE CASES CONSIDERATIONS SUMMARY CONCLUSIONOVERVIEW

Underlying these innovations are
transformer architectures, which
facilitate robust sequence-to-sequence
learning for context-aware data
processing – capabilities essential
for tasks ranging from clinical data
analysis to the automation of complex
workflows.

reuters.com, persistent.com, techtarget.com,
xcubelabs.com

2.1 Foundational Models & Techniques

Foundational models and techniques in generative AI have
fundamentally reshaped the technological landscape,
enabling breakthrough applications in healthcare and life
sciences. Large Language Models (LLMs), such as GPT4, have
demonstrated remarkable proficiency in understanding and
generating human-like text and structured code, underpinning
advanced applications from automated clinical and laboratory
documentation to patient communication tools.

In parallel, diffusion models and Generative Adversarial
Networks (GANs) have emerged as powerful engines for image
generation, enabling the creation of well-structured diagrams
and graphics as well as synthetic medical images that both
augment training datasets and enhance diagnostic accuracy.

2. Overview of GenAI Technologies

Transformers & Large
Language Models

Generative Adversarial
Networks

Diffusion Models

Semi-automated
document
generation

Optimized testing
processes and
quality assurance

Efficient knowledge
retrieval and
information
management

Use Cases

Natural Language Processing
& Text Generation

Workflow Automation

Retrieval-Augmented
Generation

Core CapabilitiesDeep Learning
Models

https://www.zeiss.com/digital-innovation/home.html
https://www.reuters.com/technology/artificial-intelligence/healthcare-startup-suki-raises-70-million-build-ai-assistants-hospitals-2024-10-10/
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
https://www.techtarget.com/healthtechanalytics/news/366590030/Generative-AI-may-bolster-digital-healthcare-software-development
https://www.xcubelabs.com/blog/generative-ai-in-healthcare-developing-customized-solutions-with-neural-networks/

8zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESUSE CASES CONSIDERATIONS SUMMARY CONCLUSIONOVERVIEW

2.2 Key Capabilities and Use Cases
enabled by GenAI

Generative AI is transforming healthcare and life sciences by
streamlining operations, accelerating innovation, and enabling
personalized care. Built on powerful capabilities like natural
language processing, computer vision, code generation,
synthetic data modeling, and workflow automation, GenAI
addresses key pain points across clinical, laboratory, and
research domains.

•	 	Streamlined Clinical and Laboratory Documentation:
GenAI automates the creation of patient notes, lab reports,
discharge summaries, and clinical trial documentation using
NLP models that transform unstructured data into structured,
standardized records. In laboratory settings, it supports
documentation of experimental protocols, lab results, and
quality reports – reducing manual input while improving
traceability, compliance, and reporting accuracy.

•	 	Advanced Diagnostics and Decision Support: In
radiology, pathology, and laboratory medicine, GenAI-
powered computer vision systems enhance image analysis by
improving resolution, detecting anomalies, and supporting
risk stratification. These capabilities enable earlier and more
precise diagnostics in both clinical and research settings, such
as identifying cellular morphologies or analyzing histological
slides.

•	 	Synthetic Data Generation for Research, Development,
and Training: GenAI generates privacy-preserving, high-
fidelity synthetic patient or biological datasets that reflect
real-world patterns. These datasets are essential for
training AI models, simulating rare conditions, augmenting
clinical trials, and safely conducting virtual experiments. In
laboratories, synthetic data can simulate assay results or
experimental conditions, supporting more robust validation
and reproducibility.

•	 	Text & Code Generation and Engineering Automation:
GenAI assists developers and lab engineers by generating
documentation, software prototypes, test scripts, laboratory
automation code, and data processing pipelines from natural
language prompts. This capability accelerates digitalization
across regulated environments, such as LIMS (Laboratory
Information Management Systems) and
electronic lab notebooks.

•	 	Workflow Automation Powered
by Multi-Agent Systems: Behind
the scenes, AI agents collaborate to
automate complex processes across
healthcare and life sciences – ranging
from regulatory documentation and
audit trail creation to sample tracking and experiment
scheduling. These multi-agent systems enable adaptive
workflow orchestration that improves speed, reduces errors,
and ensures regulatory compliance.

•	 	Efficient Information Management with RAG: Retrieval-
Augmented Generation (RAG) enhances GenAI by grounding
outputs in trusted sources like QMS templates, regulatory
guidelines, and clinical databases – enabling compliant,
customized content generation. Combined with intelligent
search and summarization, it streamlines information
retrieval, reduces review time, and supports faster, audit-
ready documentation – modernizing QMS and decision-
making in healthcare and life sciences.

With these capabilities, generative AI is not just optimizing
isolated tasks – it’s reshaping the foundations of how healthcare
providers, life sciences researchers, and laboratory professionals
operate. From streamlining documentation to accelerating
drug discovery, GenAI enables a smarter, faster, and more
personalized future for science and care delivery.

techtarget.com, c3.ai, reuters.com, xcubelabs.com,
compunnel.com, persistent.com

https://www.zeiss.com/digital-innovation/home.html
https://www.techtarget.com/healthtechanalytics/news/366590030/Generative-AI-may-bolster-digital-healthcare-software-development
https://c3.ai/generative-ai-in-healthcare-the-opportunity-for-medical-device-makers/
https://www.reuters.com/technology/artificial-intelligence/healthcare-startup-suki-raises-70-million-build-ai-assistants-hospitals-2024-10-10/
https://www.xcubelabs.com/blog/generative-ai-in-healthcare-developing-customized-solutions-with-neural-networks/
https://www.compunnel.com/blogs/applications-of-generative-ai-in-healthcare/
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/

9zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESUSE CASES CONSIDERATIONS SUMMARY CONCLUSIONOVERVIEW

2.3 Examples & Impact of GenAI-based
Solutions

The vision for leveraging generative AI in medical software is
centered on transforming healthcare delivery by enhancing
diagnostic tools and accelerating research and development
cycles. By integrating AI into clinical workflows, organizations
aim to develop more precise diagnostic algorithms that can
analyze imaging and genetic data with unprecedented accuracy
– leading to earlier detection of diseases and more effective
interventions. This strategy not only targets improved patient
outcomes but also strives to reduce overall treatment costs and
streamline operations.

persistent.com, c3.ai

Generative AI has the potential to drastically accelerate R&D
cycles in medical software development. By automating
routine coding tasks, generating regulatory documentation,
and enabling precise, context-aware knowledge retrieval from
internal systems, GenAI reduces the time and effort required
across the entire development lifecycle. These capabilities
support faster prototyping, more efficient test case generation,
and streamlined compliance processes – key bottlenecks in
traditional medical software workflows. When integrated
responsibly within regulatory frameworks and data privacy
requirements, GenAI empowers development teams to innovate
faster, reduce time-to-market, and focus
more on high-value activities like safety
optimization, clinical relevance, and user-
centric design.

To advance medical software
development, we initiated targeted
efforts in three key areas: Semi-
automated regulatory document
generation, optimized testing processes
and QA with automated unit test case generation, and
efficient knowledge retrieval and information management
with Retrieval-Augmented Generation (RAG) for improved
knowledge retrieval. The following sections present in detail the
comprehensive assessment of RAG’s potential impact as a basis
for future investment decisions and the implemented MVPs for
documentation and test generation including preliminary results.
Together, these initiatives aim to streamline development
workflows and accelerate innovation while maintaining
compliance and quality.

https://www.zeiss.com/digital-innovation/home.html
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
https://c3.ai/generative-ai-in-healthcare-the-opportunity-for-medical-device-makers/

10zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESCONSIDERATIONS SUMMARY CONCLUSIONOVERVIEW

A RAG-enabled solution leverages internal data by processing
extensive documentation into embeddings – mathematical
representations capturing the semantic meaning – and storing
them in a vector database for rapid retrieval. The RAG approach
then follows a three-step process: First, in the retrieval phase,
the system swiftly identifies the most relevant documents from
this vector database; next, during the augmentation phase, it
supplements these findings with additional context to ensure
the information is tailored to the user’s query; and finally, in the
generation phase, the language model combines this context
with its inherent knowledge to deliver precise, context-specific
responses. This powerful integration promises to streamline
workflows, reduce time spent searching for critical information,
and boost overall efficiency, making it a highly valuable
enhancement for medical software programs with expansive
knowledge bases operating under standards like IEC62304.

sap.com, aws.amazon.com, medium.com

Context
In many medical software programs following IEC62304, the
vast amounts of documentation and expansive wikis represent
immense knowledge assets, yet finding the right piece of
information remains a challenge. Technical teams often spend
excessive time – sometimes up to several hours per week –
sifting through disjointed resources like API documentation,
sprint reviews, or architectural details. While current search
methods provide access to this wealth of data, there is
significant potential to further enhance efficiency and user
experience. Conventional LLM-based chatbots rely solely on
pre-trained models and, as a result, cannot tap into the rich, up-
to-date company-internal repositories maintained within
these regulated environments.

3. Use Cases

USE CASES

Average time spent retrieving information
in wikis per week per person:

How satisfied team members are with
search results in wikis:
1 very low – 5 very high satisfaction

60 2.73min

Average Rating

The current information retrieval solutions, such as search bars, are inadequate, evidenced by a low
satisfaction rating of 2.7 out of 5 stars for an exemplary wiki. Employees spend an average of 60 minutes
per week searching for relevant information, highlighting inefficiencies. There is a clear need for improved
methods, with a preference for implementing RAG-enabled chatbots to enhance information retrieval
processes (source: Internal analysis).

3.1 Use Case 1: Advanced Knowledge Retrieval and Preparation with
Retrieval-Augmented Generation (RAG)

https://www.zeiss.com/digital-innovation/home.html
https://architecture.learning.sap.com/docs/ref-arch/e5eb3b9b1d/3
https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://medium.com/%40tejpal.abhyuday/retrieval-augmented-generation-rag-from-basics-to-advanced-a2b068fd576c

11zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

Finally, we focused on selected teams with the highest
potential for efficiency gains: We defined key use cases for
information retrieval and conducted follow-up internal surveys
to measure current resource investment, satisfaction, and overall
sentiment towards chatbot integration. A parallel evaluation
for an external use case provided additional validation of our
assumptions, with all findings comprehensively presented to
management. This multi-stage, data-driven approach not only
solidified the feasibility and strategic value of a RAG system but
also set the foundation for leveraging GenAI to substantially
improve efficiency and user satisfaction in medical software
development.

Solution Approach
We assessed the potential of a RAG solution for a large internal
software program developing infrastructure according to IEC
62304 to unlock further efficiencies in handling vast amounts of
documentation and extensive wikis. In our approach, we started
with an in-depth assessment of existing knowledge bases by
clearly cataloging and evaluating the most critical repositories,
such as the developers’ wiki and the document management
system. Recognizing the developers’ wiki as a strategic starting
point for a Minimum Viable Product (MVP) RAG system, we
aligned internally around the project scope and defined a
specific target group covering functions like DevOps, Testing,
Development, and Software Architecture. We then conducted
surveys, covering roughly 10% of this target group, to quantify
the time invested in information retrieval and the associated
levels of user satisfaction. This survey provided a concrete
baseline to measure expected improvements.

Subsequently, we performed a thorough assessment of the
implementation effort by delineating the necessary roles, work
packages, and estimated project duration. This phase
also examined operational and maintenance costs, including
platform consumption, service team expenses, and costs related
to aligning with IT demand processes and workers council
requirements. An initial solution architecture was developed in
collaboration with partners, allowing us to define a cost range,
estimate potential time savings, and ultimately calculate
the Return on Investment (ROI) as well as the break-even point
for the RAG solution. In the next stage, we explored various
integration scenarios where a RAG-enabled chatbot could be
deployed, while reassessing and validating the suitability of our
primary data source – the developers’ wiki. We also deliberated
on scaling opportunities beyond the MVP and even beyond the
immediate project, ensuring the solution could adapt to future
demands.

https://www.zeiss.com/digital-innovation/home.html

12zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

Following the analysis, we implemented a minimum viable
product (MVP) of the RAG solution using the Azure ecosystem
(see Figure 1). The RAG System MVP is a user-friendly chat
interface designed to assist users by generating AI-powered
answers augmented with content from a program-level wiki.
It consists of a React-based Single Page Application for user
interaction and a Python/Django REST framework backend that
interfaces with Azure AI Services for completion generation.
The system ingests data from the wiki stored in Azure DevOps,
ensuring relevant responses, and utilizes Microsoft Entra for
secure user authentication. Accessible via a web browser,
the system facilitates knowledge acquisition and insights into
the program ecosystem, while operators are provided with
comprehensive documentation for deployment and maintenance
using Azure Cloud services.

Results
Our evaluation began with an initial survey of technical roles,
revealing that program members spend an average of 60
minutes per day searching for information, though individual
times ranged widely from as little as 5 minutes to as much
as 300 minutes. The information they sought included API
documentation, sprint reviews, architectural details, and similar
materials. With an average satisfaction score of 2.7 out of 5,
respondents expressed considerable dissatisfaction with the
current search processes, and the majority indicated that a
chatbot would be beneficial. In fact, many participants stated
they would prefer to interact with a RAG-enabled chatbot
for information retrieval rather than rely on asking colleagues
directly, clearly highlighting an opportunity for improvement.

Regarding implementation efforts, our assessment identified
that deploying a RAG pipeline is streamlined on cloud platforms
like Azure, which offer ready-made services to support key
functions. The primary implementation tasks include preparing
the data from the designated knowledge base – this involves
generating embeddings and creating a vector database – setting
up and deploying the data pipeline, and configuring system
prompts for the LLM. Additionally, a manual validation process is
required, involving the development of a set of golden questions
and answers in collaboration with domain experts.

Figure 1 Solution design of the RAG System MVP (simplified)

Single
Page App

Al
Assistant

API
Azure Dev Ops Wiki

Microsoft Entra

Azure OpenAI
Service (LLM

access)

Data lngest
Application

Azure Al
Search

Blob Storage
 (import of

wiki pages into
AI Search)

RAG SYSTEM

USER

https://www.zeiss.com/digital-innovation/home.html

13zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

In parallel, we conducted a detailed data quality assessment
of the developers’ wiki by analyzing factors such as the
volume of textual and unstructured data (images, diagrams),
and consulting experts on issues like duplicated or outdated
information, update regularity, and overall structural definition.
The conclusions confirmed that the wiki is a suitable repository
for the RAG system, although minor adaptations may be
necessary during system tuning. For integration, we identified
an existing company web frontend as the target, which
promises ease of integration and centralized accessibility as well
as options for user authentication and authorization. Scalability
was also a key focus. We discussed extending the RAG system
beyond the wiki to encompass other vital knowledge sources
like the document management system, as well as reaching
additional target groups such as nontechnical roles (e.g., Project
Leads, Product Owners). With all knowledge bases integrated,
deployment could expand to other programs within the
organization, with anticipated implementation cost savings of
30–40% due to already established data pipelines and internal
expertise. However, each new use case would still require
steps like in-depth assessments, data preparation and system
validation.

The questions are run through the system to compare outputs
against desired responses, leading to adjustments in system
prompts or refinements in the source documentation. Although
advanced options such as fine-tuning the LLM or introducing
knowledge graphs were noted, they were not pursued at
this stage. Supplementary activities like documentation and
integrating a frontend were also factored into the overall effort.
Overall, the implementation is estimated to take between 12
and 16 weeks, with team costs ranging from about 200k€
(optimistic) to 290k€ (conservative) and additional monthly
maintenance and operations costs of approximately 4k€ to
6k€, depending on service consumption and maintenance
requirements. Cost-saving estimates were derived from the
expected time savings in searching and retrieving information
per program member based on their hourly rates and projected
efficiency improvements of 30% (conservative) to 50%
(optimistic) when using the RAG system. This leads to estimated
monthly savings of roughly 15k€ in the conservative case and
24k€ in the optimistic case. These improvements translate into
a break-even period of approximately 2.8 years and an 80%
ROI over 5 years under conservative assumptions, while the
optimistic scenario shows a break-even of just 0.8 years with a
520% ROI after 5 years, indicating significant potential (Figure 2).

0.0

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

Cu
m

ul
at

iv
e

N
et

 S
av

in
gs

 (M
EU

R)

Years

Return on lnvest
for 5 Years
Optimistic case
520%
Conservative case
80%

Break-even Point: 0.8 years 2.8 years

Conservative Total Implementation Cost (€290,000)

Optimistic Total Implementation Cost (€200,000)
Conservative Cumulative Savings

Optimistic Cumulative Savings

Figure 2 ROI analysis with net savings over time for the RAG System MVP

https://www.zeiss.com/digital-innovation/home.html

14zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

Additionally, while financial assessments showed potential cost
savings from implementing a RAG solution, it is important to
recognize that the primary value lies in its ability to enhance
user satisfaction. A RAG solution can significantly improve
the experience of employees by providing timely and relevant
information, thereby enabling a modern tooling environment
that empowers them to perform their tasks more efficiently. This
increased satisfaction can lead to higher employee morale and
retention, which are critical factors in a competitive industry.

Moreover, the cost savings associated with a RAG solution are
often indirect. Employees are not automatically compensated
less simply because they save time; rather, the time they save
can be redirected towards more value-creating tasks. For
instance, developers can focus on feature implementation in
software projects, allowing development initiatives to progress
more rapidly. This shift in focus not only accelerates project
timelines but may also enhance the overall quality of the
software being developed, as employees can dedicate their
efforts to innovation and improvement rather than mundane
information retrieval tasks.

From a technical standpoint, the hurdles in setting up a RAG
pipeline are relatively low, thanks to streamlined implementation
processes provided by major platform providers and ready-
made services. The quality of data in the connected knowledge
bases is crucial. If the data is outdated or poorly maintained,
the RAG system will not deliver accurate information. Therefore,
establishing a solid data foundation is necessary, although it
is advisable not to overinvest if reliable knowledge bases like
wikis or document management systems are already in place.
Conducting an initial assessment, setting up an MVP, and
evaluating its performance can provide valuable insights into any
necessary adaptations in the knowledge base.

Finally, considerations around data privacy, alignment with
internal IT processes, cybersecurity, and compliance with
workers councils (e.g., for saving chat history) are critical to
successfully deploy a RAG system. These aspects ensure that the
solution not only meets technical and user requirements but also
adheres to organizational policies and regulations. By addressing
these factors, organizations can maximize the benefits of a
RAG-enabled chatbot, ultimately leading to a more efficient,
satisfied, and productive workforce.

Lastly, we conducted detailed evaluations in two relevant
projects within the program to define key use cases for
information retrieval. These crucial use cases were first
knowledge transfer for new teams and second onboarding for
client application teams, utilizing the infrastructure developed
in the program as the backend for their applications; here, time
savings of roughly 25 to 50 minutes per person per week were
expected, with a user satisfaction score of around 3.3 out of
5 – indicating clear room for improvement. The third use case
focused on software development based on existing software
components, where developers and Product Owners currently
invest significant time reviewing existing documentation to
build their solutions based on the existing components. In this
context, our research indicated that a RAG system could save
an estimated 70 to 110 minutes per week per person, with
user satisfaction being notably low at 2.5 out of 5, thereby
reinforcing the potential value of a RAG-enabled chatbot
to support efficient information retrieval and improved user
satisfaction.

Overall, the comprehensive evaluation – from initial survey
results through implementation feasibility, cost-benefit analysis,
data quality assessments, integration and scalability planning,
to detailed project-specific use case evaluations – demonstrates
the significant potential of a RAG system to enhance information
retrieval, reduce wasted time, and ultimately improve user
satisfaction across multiple domains within medical software
development programs.

Lessons Learned
Our comprehensive evaluation of implementing a RAG-enabled
chatbot in a medical software development environment has
yielded several key lessons. Firstly, conducting an in-depth
assessment is essential to understand the unique potential
of a RAG solution for each specific use case. It is crucial to
obtain data directly from the relevant context, such as the
specific program where the solution will be leveraged, to
accurately assess the current situation regarding time invested
in information retrieval and user satisfaction. This helps validate
the feasibility, desirability and viability of a RAG solution in that
context. Engaging the target audience early on ensures that
the solution developed will be utilized effectively, avoiding the
pitfall of building a system that remains unused.

https://www.zeiss.com/digital-innovation/home.html

15zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

During this phase, it is essential to measure a variety of relevant
metrics to comprehensively assess the impact of the RAG
system. These metrics could include:
•	 	User interactions per week with the system: Tracking how

frequently users engage with the chatbot.
•	 	Average time spent on information retrieval: Measuring the

time users spend searching for information using the RAG
system.

•	 	User satisfaction scores: Conducting follow-up surveys
and interviews to gauge user satisfaction and perceived
usefulness of the system.

•	 	Accuracy and relevance of responses: Evaluating the quality
of the information provided by the chatbot.

•	 	Efficiency improvements: Calculating time savings and
productivity gains based on user feedback.

•	 	Adoption rate: Monitoring the percentage of the target
group actively using the system.

Collecting and analyzing these metrics after the system has
been in use for several weeks will provide a comprehensive view
of the system’s effectiveness and its real value. This data will be
crucial for making informed decisions regarding further scaling
and potential enhancements of the RAG system.

Next Steps
Following the assessment and the successful setup of the MVP,
the next step is to deploy the MVP solution and initiate its
rollout to the defined target group of technical specialists within
the program. A staged rollout is recommended – starting with
a select group of users to gather early feedback, validate the
solution’s effectiveness in real-world use, and perform initial
system tuning.

The first phase of tuning will focus on adjusting system prompts,
refining retrieval logic, and curating or enriching the underlying
knowledge base to improve response quality and relevance.
Should these adjustments prove insufficient in meeting user
expectations or delivering the desired efficiency gains, we will
evaluate the adoption of more advanced RAG architectures
such as Graph-RAG for enhanced contextual linking or Agentic
RAG to enable more dynamic, multi-step reasoning and
task execution. These approaches offer potential for greater
accuracy, better information synthesis, and a more interactive
user experience. Once the system is delivering the required
performance, the rollout can be extended to the entire target
group.

https://www.zeiss.com/digital-innovation/home.html

16zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

Context
Language-related tasks like documentation make up 62%
of employees’ total working time, and 65% of that can be
optimized through augmentation and automation with GenAI.

Accenture.com

Generative AI can significantly enhance and automate the
process of document generation across various domains. We
have created an internal prototype of the so-called Chat based
genAI- DOCumentation creator tool (CAIDOC) that is focused
to assist software project teams to fulfill their documentation
needs. CAIDOC reduces the burden of monotonous
documentation creation and adaption tasks, which increases
the efficiency of the documentation process and shortens
documentation review and update cycles. CAIDOC can also
be tailored and trained for different document templates,
documentation cycles and processes, as well as adapted to
requirements of different industries or business contexts via
Retrieval-Augmented Generation approaches. The cost saving
opportunity from solutions like CAIDOC is estimated to be about
1 million € considering the completion of 2000 documents1.

3.2 Use Case 2: Semi-Automated Document Generation

Pages per document

Documents

Phases

Gates

30 – 100

125

6

7
Especially in software engineering
for medical domains significant
documentation is necessary for later
successful certification. An exemplary
documentation process at ZEISS,
essential for compliance, involves
the creation of approximately 125
documents with about 30 to over
100 pages in size across 6 phases
and 7 gates. This time-consuming
process includes multiple review
cycles to ensure quality, making it
indispensable and unavoidable.

In highly regulated domains such as healthcare, legal, or
government, software development demands the creation of
extensive and formalized documentation. This often involves
populating complex templates with recurring project- and
product-specific information, which must be presented from
multiple perspectives across various document types. As a result,
teams are required to rephrase and reformat the same core
content repeatedly – making the process time-consuming, error-
prone, and discouraging, especially for those less experienced
with regulatory documentation standards.

The documentation burden is further compounded by
unstructured review processes, where quality and completeness
depend heavily on the reviewer’s individual interpretation.
This often leads to repeated revision cycles and inconsistent
outcomes.

1	 Considering 50% documentation automation and assuming 5 person-days per document on average to draft, review, refine and complete.

https://www.zeiss.com/digital-innovation/home.html
https://www.accenture.com/content/dam/accenture/final/accenture-com/document/Accenture-A-New-Era-of-Generative-AI-for-Everyone.pdf

17zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

With our CAIDOC prototype, we demonstrated that initial drafts
of regulatory documents could be generated within minutes
rather than hours or days. This represents a significant reduction
in manual effort, and a 50% automation potential may be
considered a conservative estimate based on early results. By
reducing the cognitive and operational load of documentation,
such solutions can free up valuable expert time and improve
consistency across document sets.

Solution Approach
AI technologies can meaningfully reduce the documentation
burden in medical software development by learning from
existing project artifacts. By analyzing historical documents,
AI can assist in creating new, compliant drafts more quickly
and consistently – improving both the speed and quality of
documentation across the software lifecycle.

Our CAIDOC prototype exemplifies this potential by supporting
users in generating documentation based on existing examples
and project-specific input. To use CAIDOC effectively, each
document type requires a set of at least five references:

One blank template to guide generation, and four finalized
documents from previous projects to provide context. Once
ingested, the system enables chapter-by-chapter drafting
through a web-based interface. Users select the document type
(e.g., Software Development Plan or Release Information), enter
basic project metadata, and are guided through intelligent,
context-aware suggestions. Once completed, the full document
can be exported in .docx format in line with predefined
templates.

As shown in the solution design in Figure 3, CAIDOC begins
with the user defining the project context. This is followed
by interactive chapter-based generation using pretrained
models and contextual examples from the knowledge base.
The system leverages AI reasoning and previously ingested
data to populate templates, validate structure, check for
correctness & completeness and produce a high-quality draft
document tailored to organizational standards. After formatting
and exporting the final document is ready for review by a
quality manager before being integrated into the document
management system.

Figure 3 Solution design of CAIDOC (simplified)

USER

Final document Draft document

Send, receive and
process GenAI-based

responses

Select document type
and collaboratively
draft content for

paragraphs

Retrieve exemplary documents,
generate augmented responses
and check completeness and
correctness

Formatting and Exports

WEB CHAT INTERFACE AI BACKEND KNOWLEDGE BASE

https://www.zeiss.com/digital-innovation/home.html

18zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

CAIDOC is particularly useful for roles such as Software Project
Managers, Requirements Engineers, Quality Managers, and
Business Analysts – especially those working in regulated
environments. Looking ahead, CAIDOC aims to expand to
other units within ZEISS, supporting documentation tasks in
sectors such as healthcare, legal and compliance, cybersecurity,
and public administration – anywhere templated, rule-driven
documentation is a core requirement.

CAIDOC is implemented using a robust tech stack comprising
Java, React, Langchain, and Postgres with embeddings,
alongside Websocket for real-time communication. This
architecture supports a multi-AI agent approach, where the
Main Assistant acts as the message orchestrator, coordinating
interactions between various specialized agents. These include
the Template Expert AI Agent and the Document Expert AI
Agent, each designed to handle specific tasks within the
document creation process.

The system incorporates several tool agents to enhance
functionality:
•	 SectionListTool: Manages chapters during the creation and

ingestion process.
•	 	SectionTopicsTool: Handles the content of individual

chapters.
•	 	SectionExampleTool: Provides examples for specific

chapters.
•	 	ConfirmSectionTool: Saves content for generation upon

user agreement.
•	 	GenerateDocumentTool: Produces the complete .docx

document.
•	 	SectionQueryTool: Retrieves previously generated sections,

allowing continuation of document generation if paused.

A notable feature of CAIDOC is its approach to memory
management. While there is no persistent chat memory, the
SectionQueryTool can access already generated chapters,
ensuring continuity in document creation without re-feeding the
chatbot once closed. Additionally, every ingested and generated
chapter undergoes a similarity search across different agent
aspects, ensuring consistency and relevance in the content
produced. This sophisticated integration of AI agents and tools
within the system enables CAIDOC to deliver efficient and
personalized document generation solutions.

Lessons Learned
Throughout the development of CAIDOC, we encountered
several challenges that led to valuable insights and
improvements. One significant limitation was the context-
window token limit for longer documents. To address this, we
devised a method to generate documents chapter-by-chapter.
This approach ensures that both the ingestion and generation
processes are manageable and efficient, allowing us to handle
extensive documentation without exceeding token limits.

Additionally, we found that for more reliable document
generation, it is essential to ingest at least four example
documents. This provides the AI with a robust dataset to
reference, resulting in higher quality and consistency in the
generated documents.

Another critical lesson was the importance of providing specific
instructions and limitations in the prompts. For instance,
directives such as “don’t mix the chapters in the answer”
were necessary to prevent the AI from producing unreliable
outputs. By incorporating these detailed guidelines, we were
able to significantly improve the accuracy and relevance of the
generated documentation.

https://www.zeiss.com/digital-innovation/home.html

19zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

Next Steps
As CAIDOC evolves, several enhancements are planned to
broaden its capabilities and streamline documentation processes
for the Software Development Lifecycle (SDLC). The following
steps outline the key enhancements in the backlog:

1.	Expanding Document Types: CAIDOC will support a wider
range of document types, including agile artifacts such as
user stories and sprint retrospectives. This expansion aims
to cater to diverse project methodologies, ensuring that all
relevant documentation needs are met.

2.	Dynamic Document Ingestion: The tool will enable
dynamic and ad-hoc ingestion of existing documents,
allowing for seamless integration and utilization of legacy
information. This feature will enhance the tool’s flexibility and
adaptability to existing documentation.

3.	Document Review Assistance: A document review
helper tool will be introduced to assist Quality Managers
in evaluating documents against industry standards. This
tool will provide improvement suggestions, ensuring the
documentation meets the necessary quality benchmarks.

4.	AI-Driven Risk Assessment: CAIDOC will incorporate AI
capabilities to assess risks associated with software failures.
This enhancement will offer proactive strategies for risk
mitigation, helping teams identify and address potential
issues before they escalate.

5.	Automated Validation: AI tools will be implemented
to automate validation processes, ensuring that the
documentation aligns with project requirements and
regulatory standards. This automation will reduce manual
effort and increase accuracy in compliance.

6.	Change Control Integration: A robust AI-driven change
control process will be developed to track document and
requirement modifications. This integration will enhance
communication among team members and reduce errors
related to documentation changes.

7.	 	Knowledge Base Reusability: Future versions of CAIDOC
will focus on creating a centralized knowledge base to
facilitate the reuse of documentation across projects.
This feature will promote efficiency and consistency in
documentation practices.

8.	System Connectivity: CAIDOC will integrate with external
systems that hold requirements, tests, and user stories. This
connectivity will provide a comprehensive view of project
developments, ensuring that all relevant information is
accessible and interconnected.

These planned enhancements will significantly improve
CAIDOC’s functionality, making it a more powerful tool
for managing documentation throughout the Software
Development Lifecycle.

1

2

3

4

5

6

7

8

Expanding
Document Types

Dynamic Document
Ingestion

Document Review
Assistance

AI-Driven Risk
Assessment

Automated
 Validation

Change Control
Integration

	 Knowledge Base
Reusability

System
Connectivity

https://www.zeiss.com/digital-innovation/home.html

20zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

Context
Comprehensive testing of medical software is key to ensure
patient safety and compliance with regulatory requirements.
An integral component of modern software testing strategies
is unit testing, which involves small, quick-running tests for
individual units of software, such as single functions or classes.
Unit testing verifies code functionality and is well established as
a best practice to improve overall software quality and prevent
critical bugs in production. For the development of medical
software, unit testing is mandatory to comply with regulatory
and safety standards. However, writing and maintaining unit
tests, requires significant effort and can lead to high cost.
Industry experience, as well as insights from our own projects
gathered through expert interviews, indicate that developers
may spend up to 30% (about 12% on average) of their total
engineering time on unit testing. The required effort can be
even greater for safety-critical software, where code test
coverage of more than 98% is often mandatory to comply
with regulatory standards, such as IEC 62304. Test coverage
measures how much of the codebase is exercised by automated
tests, typically quantified through unit tests that verify individual
functions or components. It is clear, that reducing the time
needed for unit testing, without compromising software quality,
safety and regulatory compliance, can significantly accelerate
development cycles and reduce costs.

A promising approach for achieving this goal is to improve unit
test generation with generative AI. AI enabled coding assistants,
such as GitHub Copilot, have been shown to significantly reduce
the time needed for unit testing by generating tests from source
code input and user prompts. However, despite the assistance
provided by coding assistants, considerable manual effort
remains necessary. This includes tasks such as crafting precise
prompts, executing and debugging test cases, and ensuring
that the generated tests are of high quality and effectively
enhance test coverage. Consequently, a fully automated unit
test generation approach could further minimize these efforts
and yield substantial additional cost savings – Note: Our initial
project was conducted in late 2024 and early 2025. At the
time of publishing this report, GenAI-based agentic coding
assistants are already capable of effectively generating unit
tests underscoring how quickly internal initiatives can become
obsolete.

arxiv.org, dx.doi.org, zeiss.com

3.3 Use Case 3: Agentic Workflow for Test Automation

How much effort a developer spends on
implementing unit tests:
In % of project work

A unit test generation tool would free up
time to work on new features

12% on average

Developers in exemplary projects spend an average of 12% of their project time writing unit tests to
maintain product quality and regulatory compliance. With 58%, a majority of developers either strongly
agree or agree that a tool to support unit test generation would alleviate this burden, allowing them to
focus on more value-creating tasks, such as developing new features (source: Internal analysis).

Strongly Agree
Agree
Neutral
Disagree

8%8%

34%

50%

https://www.zeiss.com/digital-innovation/home.html
https://doi.org/10.48550/arXiv.2402.09171
http://dx.doi.org/10.2139/ssrn.4945566
https://www.zeiss.com/digital-innovation/health-solutions/genai-in-medical-software-development.html

21zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

As part of our strategy to enhance the software development
life cycle through the application of generative AI, we have
developed an automated agentic workflow leveraging Large
Language Models (LLMs) to generate unit tests directly from
source code after having validated the potential in the same
way as for the RAG system MVP. This solution augments code
coverage by analyzing existing test cases, the code under test,
and coverage reports to generate additional test cases that
verify previously uncovered execution paths.

The primary goals of our approach include significantly reducing
the time and resources required for the manual creation and
maintenance of unit tests, which in turn lowers costs and allows
developers to focus on core development tasks. By improving
test coverage, we aim to enhance software quality by identifying
bugs early in the development process, ultimately leading to
more robust applications. Furthermore, automating this often
unpopular task is expected to boost developer satisfaction, as it
reduces the burden of repetitive testing activities.

However, several challenges must be addressed to realize these
goals effectively. First, the quality of the generated test cases
must be sufficiently high to ensure that the effort required for
revision of the generated code does not exceed that of manual
implementation. Additionally, the solution must support a
variety of technology stacks, including different programming
languages, testing tools, and continuous integration (CI) tools.
It is also essential for the solution to adapt to company-specific
conditions, such as unique libraries and coding patterns. Finally,
the ability to generate meaningful tests for complex software
systems presents a significant challenge that must be overcome
to ensure the effectiveness of our automated testing approach.

Solution Approach
The proposed solution design for our automated unit test
generation tool (TestGPT) is depicted in Figure 4. This workflow
seamlessly integrates with existing software development tools
within a project that are used for building the source code,
execution of test suites, and analysis of code coverage. It is
designed to be flexible, allowing integration into continuous
integration (CI) environments or local use as part of the
developer’s workflow. When started, the agentic workflow
retrieves the code under test from remote or local source code
control, along with any pre-existing test cases. This ensures that
the most current version of the code and its associated tests
are used in the analysis and generation process. The core of the
workflow involves AI agents that perform a detailed analysis of
the existing tests and the code under test. These agents plan
and generate new test cases through a two-step process:

1.	Initial Test Generation: Tests are initially generated
through source code analysis. This step involves
understanding the code’s structure and functionality and the
structure of existing tests to create relevant new test cases.

2.	Coverage-Driven Test Enhancement: After the initial test
suite is built and executed, a comprehensive analysis of code
coverage, including line and branch coverage, is conducted.
This analysis identifies missed execution paths, which are
then fed back into the LLM. The LLM generates additional
test cases aimed at covering these missed branches, thereby
maximizing coverage improvement.

Existing test cases remain unmodified throughout this process,
preserving their original intent and functionality.

https://www.zeiss.com/digital-innovation/home.html

22zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

The LLM used for each agent is configurable, allowing the
selection of the most effective and cost-efficient model for each
specific task. Figure 5 provides a high-level design overview,
but each task is executed by an orchestrated group of small
agents, each optimized for a specific function. This micro-agent
approach ensures precise and reliable prompting and efficient
task execution. LangChain in combination with LangGraph is
employed for building and orchestrating these agents, providing
a robust framework for managing the complex interactions
between agents.

A critical aspect of our workflow is ensuring the high quality
of generated tests. Each test is subjected to a series of quality
gates, which evaluate the following criteria:

•	 Successful build of the solution
•	 	Correct execution of the test
•	 	Passing of all tests
•	 	Contribution to increased code coverage

github.com, langchain.com

If a test case fails to meet any of these criteria, agents attempt
to debug and rectify the error, after which the test is re-
evaluated against the quality gates. Only those test cases that
successfully pass all quality gates are incorporated into the
enhanced test suite.

In the final step, the enhanced test suite is presented to
software developers for a manual code review. This serves as
an additional layer of quality assurance, ensuring that only
valuable and reliable tests are integrated into the codebase. This
process not only maintains the integrity of the test suite but also
maximizes the efficiency and effectiveness of the automated
testing workflow.

Figure 4: Solution design of TestGPT (simplified)

“Split test class in
cases and fixtures.”

“Plan unit tests
for this class.”

“Generate specific
test case.”

Candidate
Test

“Fix issues with
test case.”

Quality Gates
(Build, Run, Pass)

Fail

Pass

“Summarize
errors.”

lmproved
Test Class

Manual Review

diff

Test Code

Code

TEST CASE GENERATION CYCLE

https://www.zeiss.com/digital-innovation/home.html
https://github.com/All-Hands-AI/OpenHands/tree/main/microagents
https://www.langchain.com/

23zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSION

Applied Automated Agentic
Workflow to 3 real projects
in digital MedTech

USE CASES

Results
The effectiveness of our solution was evaluated using three
real-world projects from the digital MedTech sector (Figure 5).
Each project employed a different technology stack, providing
a comprehensive assessment of the solution’s versatility and
performance. The projects included:
1.	 A service and manufacturing tool for medical devices

developed in Python.
2.	 A custom test automation framework for testing medical

device firmware, utilizing a C++ stack.
3.	 A cloud infrastructure solution built with a TypeScript stack.

The results show a substantial increase in code coverage across
all three projects (see Table 1). In some cases, coverage values
of 100% were achieved for specific classes. It is important to
note that, due to the medical context of the projects, the initial
test coverage was already relatively high. Despite this, the
automated test generation solution was able to significantly
increase unit test coverage. This is particularly noteworthy
because, as test coverage increases, the effort required to
manually write additional test cases typically grows significantly.
If the automated test generation solution is used from the
beginning of a project where coverage is low, coverage rates
can be increased more quickly and efficiently.

Project 1 Project 2 Project 3

Initial Test
Coverage

56% 57% 80%

Achieved Test
Coverage

75% 77% 90%

Table 1 Coverage increases through automated unit test generation

However, it is important to ensure that the generated test
cases not only inflate coverage statistics but deliver real value
for the project. To validate this, the test cases were reviewed
by senior developers involved in the respective projects.
The acceptance rate of these test cases was 85% across all
three projects, indicating a high level of satisfaction with the
quality and relevance of the tests produced by our solution.
This demonstrates that the generated tests not only improve
coverage metrics but actively contribute to the quality of the
software.

In terms of cost, the token consumption per accepted test
case was only €0.5. This cost efficiency is a critical factor for
the scalability and practicality of the solution in real-world
applications.

Figure 5 Proof of concept results for the evaluation of TestGPT

Increases coverage
in all projects

Developers accept
about 85% of generated
cases

Consumption of about
0.5€ of tokens per accepted
test case

https://www.zeiss.com/digital-innovation/home.html

24zeiss.com/digital-innovation

INTRODUCTION IMPLEMENTATION BEST PRACTICESOVERVIEW CONSIDERATIONS SUMMARY CONCLUSIONUSE CASES

We also compared our approach to a similar solution
(Qodo-Cover from Qodo). Both solutions showed comparable
performance in terms of coverage increase, with our solution
having a slight advantage. However, our solution consumed
approximately 40% fewer input tokens, which can lead to
significant cost savings when scaled. This efficiency gain is
primarily attributed to the more effective micro-agent
approach employed in our workflow.

github.com

The evaluation results demonstrate the great potential of
GenAI-based solutions to improve code coverage and
software quality while reducing costs. The combination of
high acceptance rates, substantial coverage improvements,
and cost efficiency demonstrates the value of the automated
agentic workflow for unit test generation in diverse software
development environments.

Lessons Learned
One significant technical hurdle was the varying requirements
for test case generation based on the technology stack and
project specifics. Each programming language and project has
its own semantics and technical details, including how test
cases are set up and executed. To address these challenges,
we leveraged the analysis results from existing test cases and
code. However, an additional project-specific integration layer
was necessary on top of the core logic to ensure efficient
adaptability to new projects.

Another challenge was ensuring seamless integration into
developers’ workflows. It was crucial that the automated testing
process enhanced productivity without causing disruptions in
daily work to facilitate developer acceptance. This was achieved
through easy configurability for various tool stacks. In digital
MedTech projects, regulatory considerations are critical. A fully
automated workflow without human oversight poses significant
risks. To mitigate this, we ensured that developers manually
review all generated test cases, maintaining the necessary
quality and compliance standards, by having a human in the
loop.

The implementation highlighted the importance of diverse
skill sets within the team. Expertise in software development,
software testing, and generative AI technologies is essential.
Additionally, generative AI engineers are crucial for optimizing
the AI components within the workflow. Furthermore, involving
requirements engineers to gather insights from software
developers regarding the integration of the tool into their daily
work is vital to ensure that the solution meets user needs and
enhances productivity effectively.

Next Steps
To further improve our automated agentic workflow for unit
test generation, several next steps have been identified. First,
we aim to evaluate the solution across additional projects that
utilize different technology stacks and application areas. This
broader evaluation will help us understand the adaptability and
effectiveness of our approach in diverse contexts.

Improving integration into the developer workflow is also a
priority, with a focus on implementing features such as IDE
integration. This enhancement will streamline the testing
process and make it more accessible for developers.
Additionally, we plan to improve the solution by incorporating
extra quality gates. This could include an agent-based self-
assessment of the generated test cases and the implementation
of mutation testing to further ensure the robustness of the tests.

Refining existing agents is another critical step, as it will enhance
their performance and efficiency in generating high-quality
test cases. Moreover, we intend to enrich the solution with
comprehensive knowledge of the code base through a Retrieval-
Augmented Generation (RAG) approach, combined with a
knowledge graph that encompasses the entire code base and
project documentation. This enhancement would also facilitate
the generation of new test cases from scratch.

Furthermore, we aim to extend the solution to update existing
test cases in response to code changes, thereby reducing
flakiness and ensuring that the tests remain relevant. Lastly, we
plan to expand the scope of our solution to include other testing
levels, such as integration testing, which will provide a more
comprehensive testing framework and improve overall software
quality and software development efficiency.

https://www.zeiss.com/digital-innovation/home.html
https://github.com/qodo-ai/qodo-cover

25zeiss.com/digital-innovation

INTRODUCTION BEST PRACTICESCONSIDERATIONS SUMMARY CONCLUSIONOVERVIEW IMPLEMENTATIONUSE CASES

Before implementation and deployment, successful generative
AI initiatives in healthcare and life sciences require meticulous
preparation of proprietary company-internal data. For
text-based applications leveraging Retrieval-Augmented
Generation (RAG), this involves collecting, cleaning, and
structuring internal documentation – e.g., technical manuals,
SOPs, QMS records, and knowledge base articles – into
accessible, high-quality corpora. Data must be segmented,
enriched with metadata, and transformed into embeddings
using vectorization techniques suitable for semantic search. For
vision-based applications utilizing fine-tuning of foundation
models on domain-specific imaging data (e.g., radiology,
pathology, lab assay scans), organizations must anonymize and
normalize image data, apply consistent labeling protocols, and
ensure ground truth accuracy through expert validation.

nvidia.com, medium.com, softwareone.com

Implementing generative AI in healthcare requires a robust
technical architecture that supports intensive model training,
secure and scalable deployment, and long-term maintainability.
Cloud-based solutions are increasingly favored due to their
flexibility and scalability, offering access to high-performance
computing resources such as GPU clusters, vector databases,
and managed AI services that are essential for training and fine-
tuning deep learning models on clinical, imaging, or laboratory
data. This setup accelerates experimentation, enables dynamic
updates, and allows on-demand scaling, making it particularly
suited for innovation-driven healthcare initiatives.

On-premises deployments, however, remain crucial for
organizations with strict data governance and security
requirements. These deployments offer full control over
infrastructure and data, facilitating compliance with privacy
regulations such as HIPAA and GDPR. In practice, a hybrid
architecture where cloud services handle compute-intensive
tasks and sensitive data is stored and processed locally is
often the most practical and compliant solution.

To support this architecture, key infrastructure components
include:
•	 	High-throughput data storage (e.g., Azure Blob Storage, AWS

S3, or local NAS)
•	 	Scalable compute (e.g., Azure Machine Learning, AWS

SageMaker, or on-prem GPU nodes)
•	 Vector databases for semantic search (e.g., Pinecone,

Weaviate, FAISS)
•	 	Secure API gateways and role-based access control for clinical

and research environments

4. General Implementation Approach

4.1 Data Preparation 4.2 Implementation & Deployment

https://www.zeiss.com/digital-innovation/home.html
https://developer.nvidia.com/blog/mastering-llm-techniques-data-preprocessing/
https://amanattar.medium.com/day-16-preprocessing-data-for-generative-models-4eece4b62201
https://www.softwareone.com/en/blog/articles/2024/03/12/how-to-prepare-data-for-genai

26zeiss.com/digital-innovation

INTRODUCTION BEST PRACTICESCONSIDERATIONS SUMMARY CONCLUSIONOVERVIEW IMPLEMENTATIONUSE CASES

Architectural Approaches for GenAI-Based Systems
A common architectural pattern emerging in GenAI
healthcare deployments is the multi-agent system. In this
approach, specialized AI agents (e.g., for document retrieval,
summarization, risk classification, or code generation) operate
independently but coordinate to complete complex tasks such
as QMS documentation, regulatory submission preparation,
or clinical trial reporting. They use an LLM inference service
as the backend engine to process reasoning tasks and
generate responses for user requests. This modularity supports
maintainability, parallelism, and scalability across diverse
workflows (Figure 6). The user can securely interact with the
multi-agent system via a portal connected to an API gateway.

The agents can obtain specialized data, e.g. from a vector
database in the data layer, and are often orchestrated via an
agent orchestrator using frameworks like:
•	 	LangChain – For building LLM-powered pipelines and

connecting tools such as retrievers, memory, agents, and
APIs

•	 	LangGraph – For defining graph-based workflows that allow
conditional logic, retries, and multi-agent interaction patterns

•	 	Semantic Kernel (Microsoft) – For embedding LLMs into
existing .NET-based healthcare systems

•	 	Haystack – For RAG implementations focused on search and
question answering over private corpora

Clinical App /
Portal

Semantic
Search/
Results

Tasks/
Results

Tasks/
Results

Secure API
Gateway

Agent
Orchestrator

Document
Retrieval Agent

Code Generation
Agent

Risk Classification
Agent

Summarization
Agent

Clinical, Imaging
& Lab Data

Vector
Database

AI AGENTS

DATA LAYER

Index &
Embed

User
Requests/
Responses

Control/
Events

Prompt/
Response

Prompt/
Response

LLM Inference
Service

MODEL &
INFERENCE

Figure 6: Solution architecture for an exemplary multi-agent system for a clinical application

https://www.zeiss.com/digital-innovation/home.html

27zeiss.com/digital-innovation

INTRODUCTION BEST PRACTICESCONSIDERATIONS SUMMARY CONCLUSIONOVERVIEW IMPLEMENTATIONUSE CASES

Cloud Platforms & Deployment Considerations
Cloud ecosystems such as Azure, AWS, and Google Cloud offer
native support for deploying GenAI-based solutions:
•	 	Azure AI Foundry with integrated OpenAI models and

Cognitive Search
•	 	AWS Bedrock or SageMaker JumpStart for scalable

model hosting and data privacy management
•	 	Google Cloud Vertex AI for multimodal model integration

and healthcare compliance features

For deployment, containerized environments (e.g., Docker,
Kubernetes, e.g. Azure AKS, AWS EKS) are essential to ensure
scalability, monitoring, and reliability. These platforms allow
services such as inference APIs, retrievers, and orchestration
agents to scale independently based on usage demands, which
is critical in healthcare contexts where performance and uptime
are non-negotiable.

To ensure safe and reliable operation, additional best practices
include:
•	 	Automated monitoring and logging of model inputs/outputs

(for auditability and safety)
•	 	Rate-limiting and approval steps for high-risk tasks (e.g.,

clinical recommendations)
•	 	Scheduled retraining pipelines to keep the models aligned

with evolving knowledge bases and clinical guidelines

amazon.com, google.com, langchain.com, medium.com,
microsoft.com, techtarget.com, xenonstack.com

Maintaining generative AI systems requires continuous
monitoring, evaluation, and updates to ensure reliability,
compliance, and performance over time. This involves
implementing robust DevOps and GenAI Ops practices to
manage the broader application infrastructure – including APIs,
vector databases, orchestration logic, and integration layers – as
well as MLOps or LLMOps practices to govern the lifecycle of
the underlying models, when not fully managed by third-party
providers.

Key tasks at the model level (MLOps/LLMOps) include tracking
model drift, retraining on updated datasets, validating outputs
for accuracy, fairness, and bias, and ensuring reproducibility
and governance of model artifacts. In parallel, GenAI-specific
operations focus on maintaining prompt templates, tuning
retrieval pipelines, managing grounding data sources, and
controlling the behavior of large language models – especially in
Retrieval-Augmented Generation (RAG) or multi-agent systems.

At the system level, DevOps and GenAI Ops responsibilities
include ensuring infrastructure scalability, monitoring uptime,
securing APIs, logging user interactions, and managing
deployment pipelines across cloud or hybrid environments.

Regular audits and performance evaluations are also essential to
meet regulatory standards (e.g., EU AI Act, HIPAA, GDPR) and
institutional IT requirements.

Effective maintenance is not a one-time task but an ongoing,
multidisciplinary effort that ensures clinical relevance, ethical
alignment, and operational stability of GenAI-powered solutions
in healthcare and life sciences.

devops.com, medium.com, ml-ops.org, wandb.ai

4.3 Maintenance

https://www.zeiss.com/digital-innovation/home.html
https://aws.amazon.com/bedrock/
https://cloud.google.com/vertex-ai?hl=en
https://www.langchain.com/
https://dr-arsanjani.medium.com/patterns-for-agentic-ai-in-multi-agent-systems-patterns-1-4-f4c952bfc123
https://azure.microsoft.com/en-us/products/ai-services
https://www.techtarget.com/healthtechanalytics/news/366590030/Generative-AI-may-bolster-digital-healthcare-software-development
https://www.xenonstack.com/blog/generative-ai-healthcare-system
https://devops.com/devops-for-machine-learning-and-arti%EF%AC%81cial-intelligence/
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a-practical-guide-d5bedaa59d78
https://ml-ops.org/content/mlops-principles
https://wandb.ai/onlineinference/llm-evaluation/reports/LLMOps-explained-Managing-large-language-model-operations--VmlldzoxMjM2MDM4MQ

28zeiss.com/digital-innovation

INTRODUCTION BEST PRACTICES SUMMARY CONCLUSIONCONSIDERATIONSOVERVIEW IMPLEMENTATIONUSE CASES

Effective implementation of generative AI in healthcare and
life science hinges on robust data management strategies that
ensure both high-quality inputs and rigorous privacy safeguards.
Organizations must establish comprehensive pipelines for
data collection, cleaning, and annotation to transform raw
clinical, imaging, and genomic data into reliable training
datasets. Advanced preprocessing techniques remove noise and
standardize formats, while precise annotation enriches these
datasets with meaningful labels critical for model performance.
Equally important are privacy-preserving methods – such
as de-identification and synthetic data generation – that
enable compliance with regulations like HIPAA and GDPR
while expanding the dataset without compromising sensitive
patient information. By integrating these strategies, healthcare
providers can harness generative AI to enhance diagnostic tools
and accelerate R&D cycles, ultimately fostering innovation and
improving patient outcomes.

persistent.com, xenonstack.com

Regulatory and compliance issues form a critical pillar for
the successful integration of generative AI into healthcare.
Organizations must navigate a multifaceted regulatory
landscape, including the U.S. FDA’s oversight of Software
as a Medical Device (SaMD), HIPAA’s stringent patient data
protection requirements, and the comprehensive privacy
mandates of the EU’s GDPR. Additionally, the emerging EU
AI Act introduces a risk-based framework specifically regulating
AI systems, classifying many healthcare applications as high-risk.
This regulation imposes strict requirements on transparency,
risk management, data governance, and post-market
monitoring making compliance a strategic imperative for
any AI deployment in the European market.

Equally essential is the rigorous validation and verification of AI
models ensuring that performance metrics such as accuracy,
sensitivity, and specificity are robustly tested across diverse
datasets and clinical environments to safeguard against bias
and overfitting. Building trust and transparency in AI-driven
decisions further demands that these systems incorporate
explainability and auditability, enabling clinicians, regulators,
and patients to understand the rationale behind algorithmic
outputs. Initiatives such as standardized reporting frameworks
and continuous monitoring practices are critical to maintain
ethical oversight and ensurethat AI innovations not only advance
healthcare outcomes but also adhere to the highest standards of
safety, accountability, and legal compliance.

binariks.com, ncbi.nlm.nih.gov, medium.com

Generative AI in healthcare holds the potential to revolutionize
patient care, but its adoption must be tempered by vigilant
ethical oversight, particularly regarding bias in training data.
Traditional medical datasets may underrepresent certain
populations, leading AI systems to reinforce existing disparities.
For example, a model trained predominantly on data from
white patients may perform poorly when applied to minority
populations, thereby risking misdiagnoses or unequal care
outcomes. Strategies for fairness and accountability include
diversifying datasets, employing bias-detection algorithms, and
integrating human-in-the-loop systems that ensure clinicians can
validate AI outputs. By instituting regular audits, transparent
reporting standards, and interdisciplinary oversight, healthcare
organizations can mitigate bias and enhance the trustworthiness
of AI applications.

pmc.ncbi.nlm.nih.gov, pmc.ncbi.nlm.nih.gov, bdo.com

5.2 Regulatory & Compliance Issues

5.3 Ethical & Bias Concerns

5.1 Data Requirements & Management

5. Special Considerations in Healthcare & Life Science

https://www.zeiss.com/digital-innovation/home.html
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
https://www.xenonstack.com/blog/generative-ai-healthcare-system
https://binariks.com/blog/ai-regulations-in-healthcare-us-eu/
https://www.ncbi.nlm.nih.gov/books/n/nap27111/pz219-1/
https://medium.com/@TheImmersiveNurse/ai-validation-principles-and-strategies-for-digital-health-success-033ba122fe27
https://pmc.ncbi.nlm.nih.gov/articles/PMC8515002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC10764412/
https://www.bdo.com/insights/industries/healthcare/the-ethics-of-generative-ai-in-healthcare-addressing-algorithmic-bias

29zeiss.com/digital-innovation

INTRODUCTION SUMMARY CONCLUSIONCONSIDERATIONSOVERVIEW IMPLEMENTATIONUSE CASES

Successful implementation of AI in regulated software
development relies on a multidisciplinary team that combines
deep technical expertise with specialized medical and
regulatory knowledge. Data scientists analyze and prepare
complex datasets, while medical domain experts ensure
that the AI’s outputs align with clinical realities and patient
needs. Software and AI engineers develop, deploy, and
maintain the systems, and regulatory specialists navigate
the intricate landscape of compliance and quality standards
such as HIPAA and FDA regulations. This diversity in expertise
not only ensures technical robustness but also builds trust
among stakeholders by safeguarding patient safety and data
privacy. When it comes to development methodologies, AI-
driven projects in healthcare benefit greatly from an agile
approach rather than traditional waterfall methods. Agile
practices facilitate iterative development, allowing teams to
quickly adapt to feedback from clinical testing and regulatory
reviews. Continuous integration and continuous delivery (CI/
CD) pipelines further enhance this process by enabling rapid,
reliable updates to AI-based systems. This ensures that new
versions are rigorously tested for performance and robustness
before deployment, reducing downtime and improving overall
system quality. Quality assurance and testing are critical to the
success of AI systems in healthcare, where even minor errors
can have serious consequences. Rigorous testing strategies
must assess not only the robustness and performance of AI
systems under various conditions – including edge cases – but
also their seamless integration with existing clinical workflows.
Integration testing ensures that AI tools work harmoniously
with other healthcare IT systems, maintaining data integrity
and operational efficiency. This comprehensive approach to
testing safeguards against unexpected system behaviors builds

confidence in the AI system’s reliability. Finally, effective change
management and user adoption are essential for integrating AI
into clinical practice. Training programs tailored for clinicians
and administrative staff help them understand the capabilities
and limitations of AI tools, enabling them to use these systems
confidently and effectively. Clear communication strategies
that articulate both the benefits and constraints of AI-driven
solutions are vital to manage expectations and ensure sustained
user engagement. This focus on education and transparent
communication fosters a collaborative environment where
technology enhances patient care without overwhelming end
users.

BEST PRACTICES

6. Best Practices & Guidelines

Figure 7 Aspects for AI integration into regulated software development

Multidisciplinary Al Team
Data scientists, medical experts, software
and AI engineers, regulatory specialists

Agile Al Development Process
Iterative cycles, clinical and regulatory
feedback

Quality Assurance & Testing
System robustness, integration with clinical
workflows

Change Management & User Adoption
Training, clear communication

https://www.zeiss.com/digital-innovation/home.html

30zeiss.com/digital-innovation

INTRODUCTION CONCLUSIONSUMMARYCONSIDERATIONSOVERVIEW IMPLEMENTATIONUSE CASES BEST PRACTICES

7. Summary

Generative AI is revolutionizing software development by
significantly boosting efficiency and reducing engineering
cycle times. In general software projects, developers can now
document code 45–50% faster, write new code 35–50% faster,
and refactor code 30–40% faster – yielding potential savings of
10–15% of total engineering time, which can rise to over 30%
with strategic integration.

Key recommendations include structured adoption through
focused training, upskilling, and robust governance, alongside
workflow optimization by automating routine coding tasks.
In healthcare and life science, these benefits are even more
transformative, where GenAI automates documentation,
diagnostics, and test case creation, supporting biomedical
research and predictive modeling with time savings of up to
55% and cost efficiencies of 6–12% of revenue over a few years.

deloitte.com, bcg.com, bcg.com, mckinsey.com, bcg.com,
bain.com

Quantitative benefits from leveraging generative AI in
regulated software development are multifaceted. For
instance, organizations have reported significant reductions in
development cycle time – often up to 40–50% – by automating
repetitive tasks and streamlining iterative prototyping. These
gains translate into tangible cost savings and improved
productivity as engineering teams focus on higher-level
innovation rather than routine coding or data cleaning.
Furthermore, enhanced diagnostic accuracy and workflow
efficiencies have been observed, with AI tools delivering up
to 20% improvement in key performance metrics by reducing
errors in image analysis and clinical decision support processes.

Alongside these quantitative metrics, qualitative benefits further
underscore the transformative impact of AI in healthcare &
life science. Improved patient outcomes have been achieved
through more personalized treatment planning and early
detection of diseases, which in turn help reduce hospital
readmissions and overall morbidity. Clinician satisfaction is
enhanced as AI alleviates administrative burdens, allowing
physicians to devote more time to direct patient care and
complex decision-making. Additionally, by integrating robust
compliance frameworks into the development process,
organizations can streamline regulatory adherence – ensuring
that AI systems meet stringent standards thus building trust
among both regulators and end users.

7.1 Expected Impact 7.2 Quantitative and Qualitative Benefit

https://www.zeiss.com/digital-innovation/home.html
https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/ai-readiness-assessment-in-medtech.html?utm_source=chatgpt.com
https://www.bcg.com/publications/2023/generative-ai-in-medtech?utm_source=chatgpt.com
https://www.bcg.com/publications/2023/how-generative-ai-is-transforming-health-care-sooner-than-expected
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.bcg.com/publications/2023/how-cio-can-leverage-gen-ai-for-software-development
https://www.bain.com/insights/beyond-code-generation-more-efficient-software-development-tech-report-2024/

31zeiss.com/digital-innovation

INTRODUCTION CONCLUSIONSUMMARYCONSIDERATIONSOVERVIEW IMPLEMENTATIONUSE CASES BEST PRACTICES

8. Conclusion

Generative AI is proving to be a transformative force in
regulated software development, delivering both quantitative
and qualitative benefits that directly enhance patient care and
organizational performance. Our analysis shows that GenAI
can dramatically reduce development cycle times and lower
costs by automating routine tasks. These efficiency gains
are complemented by substantial improvements in patient
outcomes and clinician satisfaction – allowing healthcare
providers to focus on delivering empathetic, personalized

care. In today’s competitive environment, the strategic value of
integrating GenAI solutions extends beyond mere cost savings;
it also fortifies regulatory compliance and fosters innovation,
giving organizations a significant edge in the rapidly evolving
healthcare landscape. We encourage stakeholders to explore
these transformative GenAI solutions – whether through pilot
programs, collaborative research, or bespoke AI integration
strategies – to drive measurable improvements in both
operational performance and patient care.

Now is the moment for in healthcare & life science
innovators to leverage GenAI – accelerating innovation,
enhancing patient outcomes, & achieving strategic advantage.
Contact us for further collaboration, detailed discussions, or
pilot initiatives to leverage GenAI in your organization.

https://www.zeiss.com/digital-innovation/home.html

Carl Zeiss Digital Innovation GmbH
Fritz-Foerster-Platz 2
01069 Dresden
Germany

Phone: +49 351 49701 – 500
contact.digitalinnovation.de@zeiss.com
zeiss.de/digital-innovation

Dirk Asmus
Senior Solution Specialist
ZEISS Digital Innovation
Health & Life Science Solutions

Dmytro Batsenko
Senior Business Development Manager
ZEISS Digital Innovation
Health & Life Science Solutions

Dr. Julian Massing
Senior Solution Specialist
ZEISS Digital Innovation
Health & Life Science Solutions

Dr. Andreas T. Bachmeier
Solutions Enablement Team Lead
ZEISS Digital Innovation
Health & Life Science Solutions
andreas.bachmeier@zeiss.com

David Klusoczki
Senior Requirements Engineer
ZEISS Digital Innovation
Health & Life Science Solutions

Maximilian Reichel
Software Developer
ZEISS Digital Innovation
Health & Life Science Solutions

Contact & Lead Author

Co-Authors

https://www.zeiss.com/digital-innovation/health-solutions.html

