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Executive Summary

Three ZEISS Digital Innovation initiatives and results:
A Retrieval-Augmented Generation (RAG) initiative 
demonstrated strong potential to reduce information search 
overhead and improve user satisfaction. In a large program, 
engineers reported an average of 60 minutes per day searching 
across wikis and documents, with low satisfaction (2.7/5). An 
Azure-based MVP – React frontend, Python/Django backend, 
Microsoft Entra for secure access – grounds answers in the 
program wiki and is estimated to implement in 12–16 weeks 
for €200–300k, with €4–6k monthly operations. Expected 
monthly savings of €15–24k translate to a conservative break-
even in about three years and an optimistic break-even near one 
year; five-year ROI ranges from 80% to 520%. Success depends 
on data quality, stakeholder engagement, rigorous validation 
with golden questions, and alignment with privacy, security, 
and works council requirements, with clear scaling paths to 
additional repositories and roles.

A prototype for semi-automated document generation shows 
how GenAI can compress regulatory document creation from 
hours or days to minutes through chapter-by-chapter drafting 
guided by templates and reference examples per document 
type. Early results indicate roughly 50% automation potential 
and a modeled saving of about €1 million for 2,000 documents, 
while improving consistency and accelerating reviews across 
project management, requirements, and quality roles. Practical 
lessons include managing token limits via chapter workflows and 
enforcing precise prompting. The roadmap extends coverage to 
more document types, dynamic ingestion of legacy content, AI-
assisted reviews, risk assessment, automated validation, change 
control, knowledge reuse, and integrations with requirements 
and test systems.

An agentic workflow for unit test generation further illustrates 
GenAI’s impact on quality and cost. Using a micro-agent 
approach with LangChain/LangGraph, the system analyzes 
existing tests, coverage, and code to propose additional cases 
that close missed paths, subject to strict quality gates and 
human review. Across Python, C++, and TypeScript projects, 
coverage rose substantially – reaching 100% for some classes –  
while senior developers accepted 85% of generated tests at 
an average token cost near €0.5 per accepted test. Compared 
with a similar open-source solution, the approach achieved 
comparable or better coverage with about 40% fewer input 
tokens, positioning it for scalable adoption in safety-critical 
contexts.

Realizing these benefits at scale requires disciplined data 
preparation and governance, cloud or hybrid architectures with 
vector databases and secure APIs, multi-agent orchestration, 
and robust GenAI/MLOps for monitoring, auditability, and drift 
control. Staged rollouts with clear performance metrics – usage, 
accuracy, time saved, satisfaction, and adoption – enable 
systematic tuning. Beyond measurable gains in speed and 
cost, GenAI elevates consistency, developer satisfaction, and 
compliance readiness, ultimately accelerating time-to-market 
and supporting better patient outcomes through safer, more 
reliable software.

Generative AI (GenAI) is unlocking step-change efficiency in regulated software development, where various 
regulations impose rigorous documentation, testing, and audit requirements. Relevant regulations and quality 
frameworks commonly applied in life sciences, MedTech, and pharma/lab environments include IEC 62304 (medical 
software lifecycle), the EU Medical Device Regulation (MDR), ISO 13485 (medical device QMS), GxP requirements 
(e.g., GMP/GLP/GCP), FDA regulations and guidance (e.g., 21 CFR Part 11 for electronic records/signatures),  
HIPAA for health data protection in the U.S., and the emerging EU AI Act. GenAI can reduce cycle time and cost  
by automating language- and code-heavy tasks – while keeping full traceability and human review in the loop.  
Near-term productivity gains of 10–15% of total engineering effort are achievable today, with more than 30% 
attainable through strategic adoption and scaled deployment. This whitepaper examines how GenAI can enhance 
software development in regulated environments, with MedTech and life sciences as primary examples, and 
illustrates its impact through three concrete use cases:

https://www.zeiss.com/digital-innovation/home.html
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1. Introduction

Medical and Life Science software development is inherently 
complex and faces a multitude of challenges that inhibit 
innovation and delay time to market. Strict regulatory 
frameworks – such as FDA, EU MDR, ISO 13485, HIPAA & 
GDPR, and GxP, 21 CFR Part 11, among other regulations, 
demand rigorous validation, exhaustive documentation, and 
ongoing compliance monitoring to ensure the safety, security, 
and efficacy of medical applications. These requirements 
often elongate development cycles and drive up costs, placing 
considerable pressure on teams striving to meet both innovation 
goals and regulatory expectations.

Compounding this challenge are limitations around high-
quality health data. Developers must navigate heightened 
privacy concerns and data access restrictions, which hinder 
the iterative development and personalization essential for 

modern digital health solutions. Unlike conventional, non-critical 
software, medical systems – such as electronic health records 
(EHRs), clinical decision support systems (CDSS), and imaging 
diagnostics – must demonstrate exceptional levels of accuracy, 
security, and reliability. Failures in these systems can have life-
altering consequences, from misdiagnoses to treatment delays 
or compromised patient data.

The diverse and complex workflows of clinical and laboratory 
environments present significant challenges for developers, who 
must create solutions that are not only robust but also adaptable 
to varying user needs and technical conditions. This complexity 
necessitates a strategic balance between regulatory compliance, 
data governance, and agile development practices, ensuring that 
innovation can thrive without compromising patient safety or 
data integrity. Addressing these challenges presents a significant 
opportunity: Innovation is crucial to enhance compliance, 
reduce costs, and improve patient outcomes through faster, 
more personalized digital healthcare solutions.

1.1 The Need for Innovation in Regulated 
Software Development

Regulation Challenges

Opportunity
Innovation is crucial to enhance compliance, reduce costs, and improve patient outcomes

through faster, more personalized digital healthcare solutions.

Complex regulatory frameworks:
•	 EU MDR
•	 ISO 13485
•	 IEC 62304
•	 EU Al Act
•	 …
that require rigorous validation and extensive
documentation.

Current challenges include:
•	 High costs
•	 Slow R&D cycles
•	 …
.

https://www.zeiss.com/digital-innovation/home.html
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According to Bain & Company’s 2024 report “Beyond Code 
Generation: More Efficient Software Development”, generative 
AI (GenAI) can save 10–15% of total engineering time
today, with the potential to exceed 30% through strategic 
adoption. This efficiency boost can be realized through 
targeted use cases, some of which will be discussed in this 
report. By leveraging GenAI in these domains, R&D teams 
can simplify compliance processes, reduce time-to-market, 
and unlock significant innovation potential in healthcare 
technology.

*bain.com, fda.gov, fda.gov, robinwaite.com, 
pmc.ncbi.nlm.nih.gov

10 – 15 %

> 30 %

Savings of engineering 
time by leveraging 
GenAI in software 

development

with strategic 
adoption

https://www.zeiss.com/digital-innovation/home.html
https://www.bain.com/insights/beyond-code-generation-more-efficient-software-development-tech-report-2024/
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.robinwaite.com/blog/top-challenges-bottlenecks-of-medical-software-development
https://pmc.ncbi.nlm.nih.gov/articles/PMC6376961/
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Generative AI (GenAI) represents a transformative evolution 
within artificial intelligence, characterized by its ability to 
create new, original content – ranging from human-like text to 
detailed images, audio, and similar content like program source 
code, scripts, and diagrams – by learning intricate patterns 
from enormous datasets. Unlike traditional AI or conventional 
machine learning, which primarily focus on recognizing patterns 
and making predictions based on predefined rules or labeled 
data, GenAI employs advanced deep learning architectures 
such as large language models (LLMs), diffusion models and 
generative adversarial networks (GANs) to generate novel 
outputs that can mimic human creativity and reasoning. A 
key enabler of this shift is GenAI’s ability to “understand” 
and interpret vast amounts of source data in a more organic, 
context-aware manner. This capability unlocks significantly 
broader use cases, particularly in processing and synthesizing 
large volumes of unstructured human- and machine-generated 
data and information.

mckinsey.com, techtarget.com

Generative AI is rapidly emerging as a pivotal technology in 
software development for Health and Life Sciences, offering 
targeted capabilities that address longstanding bottlenecks 
across design, development, validation, and compliance. Rather 
than simply enhancing healthcare and life science workflows, 
GenAI can directly impact core engineering tasks via its core 
capabilities like image and text creation – especially within a 
highly regulated environment.

By leveraging GenAI, R&D teams can semi-automate the 
generation of regulatory documentation, which significantly 
reduces the manual effort required to meet standards such as 
FDA, EU MDR, GMP, ISO 13485, and GxP, 21 CFR Part 11. It 
also streamlines the retrieval and summarization of complex 
technical information from vast, structured and unstructured 
datasets, improving knowledge management and traceability. 
Furthermore, GenAI accelerates software testing cycles through 
the automated generation of test cases, synthetic data, and 
model-based validation scenarios – without compromising data 
privacy. These use cases not only enhance productivity but also 
support faster time-to-compliance, higher software reliability, 
and ultimately better patient safety and outcomes.

rishabhsoft.com, arxiv.org, persistent.com, techtarget.com

1.2 What is GenAI? 1.3 Relevance and Opportunity for 
Healthcare & Life Sciences

https://www.zeiss.com/digital-innovation/home.html
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai
https://www.techtarget.com/searchenterpriseai/definition/generative-AI
https://www.rishabhsoft.com/blog/generative-ai-in-healthcare
https://arxiv.org/abs/2310.00795
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
https://www.techtarget.com/healthtechanalytics/news/366590030/Generative-AI-may-bolster-digital-healthcare-software-development
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Underlying these innovations are 
transformer architectures, which 
facilitate robust sequence-to-sequence 
learning for context-aware data 
processing – capabilities essential 
for tasks ranging from clinical data 
analysis to the automation of complex 
workflows.

reuters.com, persistent.com, techtarget.com, 
xcubelabs.com

2.1 Foundational Models & Techniques

Foundational models and techniques in generative AI have 
fundamentally reshaped the technological landscape, 
enabling breakthrough applications in healthcare and life 
sciences. Large Language Models (LLMs), such as GPT4, have 
demonstrated remarkable proficiency in understanding and 
generating human-like text and structured code, underpinning 
advanced applications from automated clinical and laboratory 
documentation to patient communication tools.

In parallel, diffusion models and Generative Adversarial 
Networks (GANs) have emerged as powerful engines for image 
generation, enabling the creation of well-structured diagrams 
and graphics as well as synthetic medical images that both 
augment training datasets and enhance diagnostic accuracy. 

2. Overview of GenAI Technologies

Transformers & Large
Language Models

Generative Adversarial
Networks

Diffusion Models

Semi-automated
document
generation

Optimized testing 
processes and 
quality assurance

Efficient knowledge
retrieval and 
information  
management

Use Cases

Natural Language Processing 
& Text Generation

Workflow Automation

Retrieval-Augmented 
Generation

Core CapabilitiesDeep Learning 
Models 

https://www.zeiss.com/digital-innovation/home.html
https://www.reuters.com/technology/artificial-intelligence/healthcare-startup-suki-raises-70-million-build-ai-assistants-hospitals-2024-10-10/
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
https://www.techtarget.com/healthtechanalytics/news/366590030/Generative-AI-may-bolster-digital-healthcare-software-development
https://www.xcubelabs.com/blog/generative-ai-in-healthcare-developing-customized-solutions-with-neural-networks/
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2.2 Key Capabilities and Use Cases  
enabled by GenAI

Generative AI is transforming healthcare and life sciences by 
streamlining operations, accelerating innovation, and enabling 
personalized care. Built on powerful capabilities like natural 
language processing, computer vision, code generation, 
synthetic data modeling, and workflow automation, GenAI 
addresses key pain points across clinical, laboratory, and 
research domains.

•	 	Streamlined Clinical and Laboratory Documentation: 
GenAI automates the creation of patient notes, lab reports, 
discharge summaries, and clinical trial documentation using 
NLP models that transform unstructured data into structured, 
standardized records. In laboratory settings, it supports 
documentation of experimental protocols, lab results, and 
quality reports – reducing manual input while improving 
traceability, compliance, and reporting accuracy.

•	 	Advanced Diagnostics and Decision Support: In 
radiology, pathology, and laboratory medicine, GenAI-
powered computer vision systems enhance image analysis by 
improving resolution, detecting anomalies, and supporting 
risk stratification. These capabilities enable earlier and more 
precise diagnostics in both clinical and research settings, such 
as identifying cellular morphologies or analyzing histological 
slides.

•	 	Synthetic Data Generation for Research, Development, 
and Training: GenAI generates privacy-preserving, high-
fidelity synthetic patient or biological datasets that reflect 
real-world patterns. These datasets are essential for 
training AI models, simulating rare conditions, augmenting 
clinical trials, and safely conducting virtual experiments. In 
laboratories, synthetic data can simulate assay results or 
experimental conditions, supporting more robust validation 
and reproducibility.

•	 	Text & Code Generation and Engineering Automation: 
GenAI assists developers and lab engineers by generating 
documentation, software prototypes, test scripts, laboratory 
automation code, and data processing pipelines from natural 
language prompts. This capability accelerates digitalization 
across regulated environments, such as LIMS (Laboratory 
Information Management Systems) and 
electronic lab notebooks.

•	 	Workflow Automation Powered 
by Multi-Agent Systems: Behind 
the scenes, AI agents collaborate to 
automate complex processes across 
healthcare and life sciences – ranging 
from regulatory documentation and 
audit trail creation to sample tracking and experiment 
scheduling. These multi-agent systems enable adaptive 
workflow orchestration that improves speed, reduces errors, 
and ensures regulatory compliance.

•	 	Efficient Information Management with RAG: Retrieval-
Augmented Generation (RAG) enhances GenAI by grounding 
outputs in trusted sources like QMS templates, regulatory 
guidelines, and clinical databases – enabling compliant, 
customized content generation. Combined with intelligent 
search and summarization, it streamlines information 
retrieval, reduces review time, and supports faster, audit-
ready documentation – modernizing QMS and decision-
making in healthcare and life sciences.

With these capabilities, generative AI is not just optimizing 
isolated tasks – it’s reshaping the foundations of how healthcare 
providers, life sciences researchers, and laboratory professionals 
operate. From streamlining documentation to accelerating 
drug discovery, GenAI enables a smarter, faster, and more 
personalized future for science and care delivery.

techtarget.com, c3.ai, reuters.com, xcubelabs.com, 
compunnel.com, persistent.com

https://www.zeiss.com/digital-innovation/home.html
https://www.techtarget.com/healthtechanalytics/news/366590030/Generative-AI-may-bolster-digital-healthcare-software-development
https://c3.ai/generative-ai-in-healthcare-the-opportunity-for-medical-device-makers/
https://www.reuters.com/technology/artificial-intelligence/healthcare-startup-suki-raises-70-million-build-ai-assistants-hospitals-2024-10-10/
https://www.xcubelabs.com/blog/generative-ai-in-healthcare-developing-customized-solutions-with-neural-networks/
https://www.compunnel.com/blogs/applications-of-generative-ai-in-healthcare/
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
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2.3 Examples & Impact of GenAI-based 
Solutions

The vision for leveraging generative AI in medical software is 
centered on transforming healthcare delivery by enhancing 
diagnostic tools and accelerating research and development 
cycles. By integrating AI into clinical workflows, organizations 
aim to develop more precise diagnostic algorithms that can 
analyze imaging and genetic data with unprecedented accuracy 
–  leading to earlier detection of diseases and more effective 
interventions. This strategy not only targets improved patient 
outcomes but also strives to reduce overall treatment costs and 
streamline operations.

persistent.com, c3.ai

Generative AI has the potential to drastically accelerate R&D 
cycles in medical software development. By automating 
routine coding tasks, generating regulatory documentation, 
and enabling precise, context-aware knowledge retrieval from 
internal systems, GenAI reduces the time and effort required 
across the entire development lifecycle. These capabilities 
support faster prototyping, more efficient test case generation, 
and streamlined compliance processes – key bottlenecks in 
traditional medical software workflows. When integrated 
responsibly within regulatory frameworks and data privacy 
requirements, GenAI empowers development teams to innovate 
faster, reduce time-to-market, and focus 
more on high-value activities like safety 
optimization, clinical relevance, and user-
centric design.

To advance medical software 
development, we initiated targeted 
efforts in three key areas: Semi-
automated regulatory document 
generation, optimized testing processes 
and QA with automated unit test case generation, and 
efficient knowledge retrieval and information management 
with Retrieval-Augmented Generation (RAG) for improved 
knowledge retrieval. The following sections present in detail the 
comprehensive assessment of RAG’s potential impact as a basis 
for future investment decisions and the implemented MVPs for 
documentation and test generation including preliminary results. 
Together, these initiatives aim to streamline development 
workflows and accelerate innovation while maintaining 
compliance and quality.

https://www.zeiss.com/digital-innovation/home.html
https://www.persistent.com/insights/whitepapers/generative-ai-in-precision-medicine-revolutionizing-healthcare/
https://c3.ai/generative-ai-in-healthcare-the-opportunity-for-medical-device-makers/
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A RAG-enabled solution leverages internal data by processing 
extensive documentation into embeddings – mathematical 
representations capturing the semantic meaning – and storing 
them in a vector database for rapid retrieval. The RAG approach 
then follows a three-step process: First, in the retrieval phase, 
the system swiftly identifies the most relevant documents from 
this vector database; next, during the augmentation phase, it 
supplements these findings with additional context to ensure 
the information is tailored to the user’s query; and finally, in the 
generation phase, the language model combines this context 
with its inherent knowledge to deliver precise, context-specific 
responses. This powerful integration promises to streamline 
workflows, reduce time spent searching for critical information, 
and boost overall efficiency, making it a highly valuable 
enhancement for medical software programs with expansive 
knowledge bases operating under standards like IEC62304.

sap.com, aws.amazon.com, medium.com

Context
In many medical software programs following IEC62304, the 
vast amounts of documentation and expansive wikis represent 
immense knowledge assets, yet finding the right piece of
information remains a challenge. Technical teams often spend 
excessive time – sometimes up to several hours per week – 
sifting through disjointed resources like API documentation,
sprint reviews, or architectural details. While current search 
methods provide access to this wealth of data, there is 
significant potential to further enhance efficiency and user
experience. Conventional LLM-based chatbots rely solely on 
pre-trained models and, as a result, cannot tap into the rich, up-
to-date company-internal repositories maintained within
these regulated environments.

3. Use Cases

USE CASES

Average time spent retrieving information 
in wikis per week per person: 

How satisfied team members are with 
search results in wikis: 
1 very low – 5 very high satisfaction

60 2.73min

Average Rating

The current information retrieval solutions, such as search bars, are inadequate, evidenced by a low 
satisfaction rating of 2.7 out of 5 stars for an exemplary wiki. Employees spend an average of 60 minutes 
per week searching for relevant information, highlighting inefficiencies. There is a clear need for improved 
methods, with a preference for implementing RAG-enabled chatbots to enhance information retrieval 
processes (source: Internal analysis).

3.1 Use Case 1: Advanced Knowledge Retrieval and Preparation with  
Retrieval-Augmented Generation (RAG)

https://www.zeiss.com/digital-innovation/home.html
https://architecture.learning.sap.com/docs/ref-arch/e5eb3b9b1d/3
https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://medium.com/%40tejpal.abhyuday/retrieval-augmented-generation-rag-from-basics-to-advanced-a2b068fd576c
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Finally, we focused on selected teams with the highest 
potential for efficiency gains: We defined key use cases for 
information retrieval and conducted follow-up internal surveys 
to measure current resource investment, satisfaction, and overall 
sentiment towards chatbot integration. A parallel evaluation 
for an external use case provided additional validation of our 
assumptions, with all findings comprehensively presented to 
management. This multi-stage, data-driven approach not only 
solidified the feasibility and strategic value of a RAG system but 
also set the foundation for leveraging GenAI to substantially 
improve efficiency and user satisfaction in medical software 
development.

Solution Approach
We assessed the potential of a RAG solution for a large internal 
software program developing infrastructure according to IEC 
62304 to unlock further efficiencies in handling vast amounts of 
documentation and extensive wikis. In our approach, we started 
with an in-depth assessment of existing knowledge bases by 
clearly cataloging and evaluating the most critical repositories, 
such as the developers’ wiki and the document management 
system. Recognizing the developers’ wiki as a strategic starting 
point for a Minimum Viable Product (MVP) RAG system, we 
aligned internally around the project scope and defined a 
specific target group covering functions like DevOps, Testing, 
Development, and Software Architecture. We then conducted 
surveys, covering roughly 10% of this target group, to quantify 
the time invested in information retrieval and the associated 
levels of user satisfaction. This survey provided a concrete 
baseline to measure expected improvements.

Subsequently, we performed a thorough assessment of the 
implementation effort by delineating the necessary roles, work 
packages, and estimated project duration. This phase
also examined operational and maintenance costs, including 
platform consumption, service team expenses, and costs related 
to aligning with IT demand processes and workers council
requirements. An initial solution architecture was developed in 
collaboration with partners, allowing us to define a cost range, 
estimate potential time savings, and ultimately calculate
the Return on Investment (ROI) as well as the break-even point 
for the RAG solution. In the next stage, we explored various 
integration scenarios where a RAG-enabled chatbot could be 
deployed, while reassessing and validating the suitability of our 
primary data source – the developers’ wiki. We also deliberated 
on scaling opportunities beyond the MVP and even beyond the 
immediate project, ensuring the solution could adapt to future
demands.

https://www.zeiss.com/digital-innovation/home.html
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Following the analysis, we implemented a minimum viable 
product (MVP) of the RAG solution using the Azure ecosystem 
(see Figure 1). The RAG System MVP is a user-friendly chat 
interface designed to assist users by generating AI-powered 
answers augmented with content from a program-level wiki. 
It consists of a React-based Single Page Application for user 
interaction and a Python/Django REST framework backend that 
interfaces with Azure AI Services for completion generation. 
The system ingests data from the wiki stored in Azure DevOps, 
ensuring relevant responses, and utilizes Microsoft Entra for 
secure user authentication. Accessible via a web browser, 
the system facilitates knowledge acquisition and insights into 
the program ecosystem, while operators are provided with 
comprehensive documentation for deployment and maintenance 
using Azure Cloud services.

Results
Our evaluation began with an initial survey of technical roles, 
revealing that program members spend an average of 60 
minutes per day searching for information, though individual 
times ranged widely from as little as 5 minutes to as much 
as 300 minutes. The information they sought included API 
documentation, sprint reviews, architectural details, and similar 
materials. With an average satisfaction score of 2.7 out of 5, 
respondents expressed considerable dissatisfaction with the 
current search processes, and the majority indicated that a 
chatbot would be beneficial. In fact, many participants stated 
they would prefer to interact with a RAG-enabled chatbot 
for information retrieval rather than rely on asking colleagues 
directly, clearly highlighting an opportunity for improvement. 

Regarding implementation efforts, our assessment identified 
that deploying a RAG pipeline is streamlined on cloud platforms 
like Azure, which offer ready-made services to support key 
functions. The primary implementation tasks include preparing 
the data from the designated knowledge base – this involves 
generating embeddings and creating a vector database – setting 
up and deploying the data pipeline, and configuring system 
prompts for the LLM. Additionally, a manual validation process is 
required, involving the development of a set of golden questions 
and answers in collaboration with domain experts. 

Figure 1 Solution design of the RAG System MVP (simplified)

Single
Page App

Al
Assistant

API
Azure Dev Ops Wiki

Microsoft Entra

Azure OpenAI
Service (LLM

access)

Data lngest
Application

Azure Al 
Search

Blob Storage
 (import of 

wiki pages into 
AI Search)

RAG SYSTEM
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https://www.zeiss.com/digital-innovation/home.html
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In parallel, we conducted a detailed data quality assessment 
of the developers’ wiki by analyzing factors such as the 
volume of textual and unstructured data (images, diagrams), 
and consulting experts on issues like duplicated or outdated 
information, update regularity, and overall structural definition. 
The conclusions confirmed that the wiki is a suitable repository 
for the RAG system, although minor adaptations may be 
necessary during system tuning. For integration, we identified 
an existing company web frontend as the target, which 
promises ease of integration and centralized accessibility as well 
as options for user authentication and authorization. Scalability 
was also a key focus. We discussed extending the RAG system 
beyond the wiki to encompass other vital knowledge sources 
like the document management system, as well as reaching 
additional target groups such as nontechnical roles (e.g., Project 
Leads, Product Owners). With all knowledge bases integrated, 
deployment could expand to other programs within the 
organization, with anticipated implementation cost savings of 
30–40% due to already established data pipelines and internal 
expertise. However, each new use case would still require 
steps like in-depth assessments, data preparation and system 
validation. 

The questions are run through the system to compare outputs 
against desired responses, leading to adjustments in system 
prompts or refinements in the source documentation. Although 
advanced options such as fine-tuning the LLM or introducing 
knowledge graphs were noted, they were not pursued at 
this stage. Supplementary activities like documentation and 
integrating a frontend were also factored into the overall effort. 
Overall, the implementation is estimated to take between 12 
and 16 weeks, with team costs ranging from about 200k€ 
(optimistic) to 290k€ (conservative) and additional monthly 
maintenance and operations costs of approximately 4k€ to 
6k€, depending on service consumption and maintenance 
requirements. Cost-saving estimates were derived from the 
expected time savings in searching and retrieving information 
per program member based on their hourly rates and projected 
efficiency improvements of 30% (conservative) to 50% 
(optimistic) when using the RAG system. This leads to estimated 
monthly savings of roughly 15k€ in the conservative case and 
24k€ in the optimistic case. These improvements translate into 
a break-even period of approximately 2.8 years and an 80% 
ROI over 5 years under conservative assumptions, while the 
optimistic scenario shows a break-even of just 0.8 years with a 
520% ROI after 5 years, indicating significant potential (Figure 2).
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Figure 2 ROI analysis with net savings over time for the RAG System MVP
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Additionally, while financial assessments showed potential cost 
savings from implementing a RAG solution, it is important to 
recognize that the primary value lies in its ability to enhance 
user satisfaction. A RAG solution can significantly improve 
the experience of employees by providing timely and relevant 
information, thereby enabling a modern tooling environment 
that empowers them to perform their tasks more efficiently. This 
increased satisfaction can lead to higher employee morale and 
retention, which are critical factors in a competitive industry.

Moreover, the cost savings associated with a RAG solution are 
often indirect. Employees are not automatically compensated 
less simply because they save time; rather, the time they save 
can be redirected towards more value-creating tasks. For 
instance, developers can focus on feature implementation in 
software projects, allowing development initiatives to progress 
more rapidly. This shift in focus not only accelerates project 
timelines but may also enhance the overall quality of the 
software being developed, as employees can dedicate their 
efforts to innovation and improvement rather than mundane 
information retrieval tasks.

From a technical standpoint, the hurdles in setting up a RAG 
pipeline are relatively low, thanks to streamlined implementation 
processes provided by major platform providers and ready-
made services. The quality of data in the connected knowledge 
bases is crucial. If the data is outdated or poorly maintained, 
the RAG system will not deliver accurate information. Therefore, 
establishing a solid data foundation is necessary, although it 
is advisable not to overinvest if reliable knowledge bases like 
wikis or document management systems are already in place. 
Conducting an initial assessment, setting up an MVP, and 
evaluating its performance can provide valuable insights into any 
necessary adaptations in the knowledge base.

Finally, considerations around data privacy, alignment with 
internal IT processes, cybersecurity, and compliance with 
workers councils (e.g., for saving chat history) are critical to 
successfully deploy a RAG system. These aspects ensure that the 
solution not only meets technical and user requirements but also 
adheres to organizational policies and regulations. By addressing 
these factors, organizations can maximize the benefits of a 
RAG-enabled chatbot, ultimately leading to a more efficient, 
satisfied, and productive workforce.

Lastly, we conducted detailed evaluations in two relevant 
projects within the program to define key use cases for 
information retrieval. These crucial use cases were first 
knowledge transfer for new teams and second onboarding for 
client application teams, utilizing the infrastructure developed 
in the program as the backend for their applications; here, time 
savings of roughly 25 to 50 minutes per person per week were 
expected, with a user satisfaction score of around 3.3 out of 
5 – indicating clear room for improvement. The third use case 
focused on software development based on existing software 
components, where developers and Product Owners currently 
invest significant time reviewing existing documentation to 
build their solutions based on the existing components. In this 
context, our research indicated that a RAG system could save 
an estimated 70 to 110 minutes per week per person, with 
user satisfaction being notably low at 2.5 out of 5, thereby 
reinforcing the potential value of a RAG-enabled chatbot 
to support efficient information retrieval and improved user 
satisfaction.

Overall, the comprehensive evaluation – from initial survey 
results through implementation feasibility, cost-benefit analysis, 
data quality assessments, integration and scalability planning, 
to detailed project-specific use case evaluations – demonstrates 
the significant potential of a RAG system to enhance information 
retrieval, reduce wasted time, and ultimately improve user 
satisfaction across multiple domains within medical software 
development programs.

Lessons Learned
Our comprehensive evaluation of implementing a RAG-enabled 
chatbot in a medical software development environment has 
yielded several key lessons. Firstly, conducting an in-depth 
assessment is essential to understand the unique potential 
of a RAG solution for each specific use case. It is crucial to 
obtain data directly from the relevant context, such as the 
specific program where the solution will be leveraged, to 
accurately assess the current situation regarding time invested 
in information retrieval and user satisfaction. This helps validate 
the feasibility, desirability and viability of a RAG solution in that 
context. Engaging the target audience early on ensures that 
the solution developed will be utilized effectively, avoiding the 
pitfall of building a system that remains unused.

https://www.zeiss.com/digital-innovation/home.html
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During this phase, it is essential to measure a variety of relevant 
metrics to comprehensively assess the impact of the RAG 
system. These metrics could include:
•	 	User interactions per week with the system: Tracking how 

frequently users engage with the chatbot.
•	 	Average time spent on information retrieval: Measuring the 

time users spend searching for information using the RAG 
system.

•	 	User satisfaction scores: Conducting follow-up surveys 
and interviews to gauge user satisfaction and perceived 
usefulness of the system.

•	 	Accuracy and relevance of responses: Evaluating the quality 
of the information provided by the chatbot.

•	 	Efficiency improvements: Calculating time savings and 
productivity gains based on user feedback.

•	 	Adoption rate: Monitoring the percentage of the target 
group actively using the system.

Collecting and analyzing these metrics after the system has 
been in use for several weeks will provide a comprehensive view 
of the system’s effectiveness and its real value. This data will be 
crucial for making informed decisions regarding further scaling 
and potential enhancements of the RAG system.

Next Steps
Following the assessment and the successful setup of the MVP, 
the next step is to deploy the MVP solution and initiate its 
rollout to the defined target group of technical specialists within 
the program. A staged rollout is recommended – starting with 
a select group of users to gather early feedback, validate the 
solution’s effectiveness in real-world use, and perform initial 
system tuning.

The first phase of tuning will focus on adjusting system prompts, 
refining retrieval logic, and curating or enriching the underlying 
knowledge base to improve response quality and relevance. 
Should these adjustments prove insufficient in meeting user 
expectations or delivering the desired efficiency gains, we will 
evaluate the adoption of more advanced RAG architectures 
such as Graph-RAG for enhanced contextual linking or Agentic 
RAG to enable more dynamic, multi-step reasoning and 
task execution. These approaches offer potential for greater 
accuracy, better information synthesis, and a more interactive 
user experience. Once the system is delivering the required 
performance, the rollout can be extended to the entire target 
group.

https://www.zeiss.com/digital-innovation/home.html
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Context
Language-related tasks like documentation make up 62% 
of employees’ total working time, and 65% of that can be 
optimized through augmentation and automation with GenAI.

Accenture.com

Generative AI can significantly enhance and automate the 
process of document generation across various domains. We 
have created an internal prototype of the so-called Chat based 
genAI- DOCumentation creator tool (CAIDOC) that is focused 
to assist software project teams to fulfill their documentation 
needs. CAIDOC reduces the burden of monotonous 
documentation creation and adaption tasks, which increases 
the efficiency of the documentation process and shortens 
documentation review and update cycles. CAIDOC can also 
be tailored and trained for different document templates, 
documentation cycles and processes, as well as adapted to 
requirements of different industries or business contexts via 
Retrieval-Augmented Generation approaches. The cost saving 
opportunity from solutions like CAIDOC is estimated to be about 
1 million € considering the completion of 2000 documents1. 

3.2 Use Case 2: Semi-Automated Document Generation

Pages per document

Documents

Phases

Gates

30 – 100

125

6

7
Especially in software engineering 
for medical domains significant 
documentation is necessary for later 
successful certification. An exemplary 
documentation process at ZEISS, 
essential for compliance, involves 
the creation of approximately 125 
documents with about 30 to over 
100 pages in size across 6 phases 
and 7 gates. This time-consuming 
process includes multiple review 
cycles to ensure quality, making it 
indispensable and unavoidable.

In highly regulated domains such as healthcare, legal, or 
government, software development demands the creation of 
extensive and formalized documentation. This often involves 
populating complex templates with recurring project- and 
product-specific information, which must be presented from 
multiple perspectives across various document types. As a result, 
teams are required to rephrase and reformat the same core 
content repeatedly – making the process time-consuming, error-
prone, and discouraging, especially for those less experienced 
with regulatory documentation standards.

The documentation burden is further compounded by 
unstructured review processes, where quality and completeness 
depend heavily on the reviewer’s individual interpretation. 
This often leads to repeated revision cycles and inconsistent 
outcomes.

1	 Considering 50% documentation automation and assuming 5 person-days per document on average to draft, review, refine and complete.

https://www.zeiss.com/digital-innovation/home.html
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With our CAIDOC prototype, we demonstrated that initial drafts 
of regulatory documents could be generated within minutes 
rather than hours or days. This represents a significant reduction 
in manual effort, and a 50% automation potential may be 
considered a conservative estimate based on early results. By 
reducing the cognitive and operational load of documentation, 
such solutions can free up valuable expert time and improve 
consistency across document sets.

Solution Approach
AI technologies can meaningfully reduce the documentation 
burden in medical software development by learning from 
existing project artifacts. By analyzing historical documents, 
AI can assist in creating new, compliant drafts more quickly 
and consistently – improving both the speed and quality of 
documentation across the software lifecycle.

Our CAIDOC prototype exemplifies this potential by supporting 
users in generating documentation based on existing examples 
and project-specific input. To use CAIDOC effectively, each 
document type requires a set of at least five references: 

One blank template to guide generation, and four finalized 
documents from previous projects to provide context. Once 
ingested, the system enables chapter-by-chapter drafting 
through a web-based interface. Users select the document type 
(e.g., Software Development Plan or Release Information), enter 
basic project metadata, and are guided through intelligent, 
context-aware suggestions. Once completed, the full document 
can be exported in .docx format in line with predefined 
templates.

As shown in the solution design in Figure 3, CAIDOC begins 
with the user defining the project context. This is followed 
by interactive chapter-based generation using pretrained 
models and contextual examples from the knowledge base. 
The system leverages AI reasoning and previously ingested 
data to populate templates, validate structure, check for 
correctness & completeness and produce a high-quality draft 
document tailored to organizational standards. After formatting 
and exporting the final document is ready for review by a 
quality manager before being integrated into the document 
management system.

Figure 3 Solution design of CAIDOC (simplified)

USER

Final document Draft document
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draft content for 

paragraphs
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CAIDOC is particularly useful for roles such as Software Project 
Managers, Requirements Engineers, Quality Managers, and 
Business Analysts – especially those working in regulated 
environments. Looking ahead, CAIDOC aims to expand to 
other units within ZEISS, supporting documentation tasks in 
sectors such as healthcare, legal and compliance, cybersecurity, 
and public administration – anywhere templated, rule-driven 
documentation is a core requirement.

CAIDOC is implemented using a robust tech stack comprising 
Java, React, Langchain, and Postgres with embeddings, 
alongside Websocket for real-time communication. This 
architecture supports a multi-AI agent approach, where the 
Main Assistant acts as the message orchestrator, coordinating 
interactions between various specialized agents. These include 
the Template Expert AI Agent and the Document Expert AI 
Agent, each designed to handle specific tasks within the 
document creation process.

The system incorporates several tool agents to enhance 
functionality:
•	 SectionListTool: Manages chapters during the creation and 

ingestion process.
•	 	SectionTopicsTool: Handles the content of individual 

chapters.
•	 	SectionExampleTool: Provides examples for specific 

chapters.
•	 	ConfirmSectionTool: Saves content for generation upon 

user agreement.
•	 	GenerateDocumentTool: Produces the complete .docx 

document.
•	 	SectionQueryTool: Retrieves previously generated sections, 

allowing continuation of document generation if paused.

A notable feature of CAIDOC is its approach to memory 
management. While there is no persistent chat memory, the 
SectionQueryTool can access already generated chapters, 
ensuring continuity in document creation without re-feeding the 
chatbot once closed. Additionally, every ingested and generated 
chapter undergoes a similarity search across different agent 
aspects, ensuring consistency and relevance in the content 
produced. This sophisticated integration of AI agents and tools 
within the system enables CAIDOC to deliver efficient and 
personalized document generation solutions.

Lessons Learned
Throughout the development of CAIDOC, we encountered 
several challenges that led to valuable insights and 
improvements. One significant limitation was the context-
window token limit for longer documents. To address this, we 
devised a method to generate documents chapter-by-chapter. 
This approach ensures that both the ingestion and generation 
processes are manageable and efficient, allowing us to handle 
extensive documentation without exceeding token limits. 

Additionally, we found that for more reliable document 
generation, it is essential to ingest at least four example 
documents. This provides the AI with a robust dataset to 
reference, resulting in higher quality and consistency in the 
generated documents.

Another critical lesson was the importance of providing specific 
instructions and limitations in the prompts. For instance, 
directives such as “don’t mix the chapters in the answer” 
were necessary to prevent the AI from producing unreliable 
outputs. By incorporating these detailed guidelines, we were 
able to significantly improve the accuracy and relevance of the 
generated documentation.

https://www.zeiss.com/digital-innovation/home.html
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Next Steps
As CAIDOC evolves, several enhancements are planned to 
broaden its capabilities and streamline documentation processes 
for the Software Development Lifecycle (SDLC). The following 
steps outline the key enhancements in the backlog:

1.	Expanding Document Types: CAIDOC will support a wider 
range of document types, including agile artifacts such as 
user stories and sprint retrospectives. This expansion aims 
to cater to diverse project methodologies, ensuring that all 
relevant documentation needs are met.

2.	Dynamic Document Ingestion: The tool will enable 
dynamic and ad-hoc ingestion of existing documents, 
allowing for seamless integration and utilization of legacy 
information. This feature will enhance the tool’s flexibility and 
adaptability to existing documentation.

3.	Document Review Assistance: A document review 
helper tool will be introduced to assist Quality Managers 
in evaluating documents against industry standards. This 
tool will provide improvement suggestions, ensuring the 
documentation meets the necessary quality benchmarks.

4.	AI-Driven Risk Assessment: CAIDOC will incorporate AI 
capabilities to assess risks associated with software failures. 
This enhancement will offer proactive strategies for risk 
mitigation, helping teams identify and address potential 
issues before they escalate.

5.	Automated Validation: AI tools will be implemented 
to automate validation processes, ensuring that the 
documentation aligns with project requirements and 
regulatory standards. This automation will reduce manual 
effort and increase accuracy in compliance.

6.	Change Control Integration: A robust AI-driven change 
control process will be developed to track document and 
requirement modifications. This integration will enhance 
communication among team members and reduce errors 
related to documentation changes.

7.	 	Knowledge Base Reusability: Future versions of CAIDOC 
will focus on creating a centralized knowledge base to 
facilitate the reuse of documentation across projects. 
This feature will promote efficiency and consistency in 
documentation practices.

8.	System Connectivity: CAIDOC will integrate with external 
systems that hold requirements, tests, and user stories. This 
connectivity will provide a comprehensive view of project 
developments, ensuring that all relevant information is 
accessible and interconnected.

These planned enhancements will significantly improve 
CAIDOC’s functionality, making it a more powerful tool 
for managing documentation throughout the Software 
Development Lifecycle.
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Context
Comprehensive testing of medical software is key to ensure 
patient safety and compliance with regulatory requirements. 
An integral component of modern software testing strategies 
is unit testing, which involves small, quick-running tests for 
individual units of software, such as single functions or classes. 
Unit testing verifies code functionality and is well established as 
a best practice to improve overall software quality and prevent 
critical bugs in production. For the development of medical 
software, unit testing is mandatory to comply with regulatory 
and safety standards. However, writing and maintaining unit 
tests, requires significant effort and can lead to high cost. 
Industry experience, as well as insights from our own projects 
gathered through expert interviews, indicate that developers 
may spend up to 30% (about 12% on average) of their total 
engineering time on unit testing. The required effort can be 
even greater for safety-critical software, where code test 
coverage of more than 98% is often mandatory to comply 
with regulatory standards, such as IEC 62304. Test coverage 
measures how much of the codebase is exercised by automated 
tests, typically quantified through unit tests that verify individual 
functions or components. It is clear, that reducing the time 
needed for unit testing, without compromising software quality, 
safety and regulatory compliance, can significantly accelerate 
development cycles and reduce costs.

A promising approach for achieving this goal is to improve unit 
test generation with generative AI. AI enabled coding assistants, 
such as GitHub Copilot, have been shown to significantly reduce 
the time needed for unit testing by generating tests from source 
code input and user prompts. However, despite the assistance 
provided by coding assistants, considerable manual effort 
remains necessary. This includes tasks such as crafting precise 
prompts, executing and debugging test cases, and ensuring 
that the generated tests are of high quality and effectively 
enhance test coverage. Consequently, a fully automated unit 
test generation approach could further minimize these efforts 
and yield substantial additional cost savings – Note: Our initial 
project was conducted in late 2024 and early 2025. At the 
time of publishing this report, GenAI-based agentic coding 
assistants are already capable of effectively generating unit 
tests underscoring how quickly internal initiatives can become 
obsolete.

arxiv.org, dx.doi.org, zeiss.com

3.3 Use Case 3: Agentic Workflow for Test Automation

How much effort a developer spends on 
implementing unit tests:
In % of project work

A unit test generation tool would free up 
time to work on new features

12% on average

Developers in exemplary projects spend an average of 12% of their project time writing unit tests to 
maintain product quality and regulatory compliance. With 58%, a majority of developers either strongly 
agree or agree that a tool to support unit test generation would alleviate this burden, allowing them to 
focus on more value-creating tasks, such as developing new features (source: Internal analysis).

Strongly Agree
Agree
Neutral
Disagree

8%8%

34%

50%
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As part of our strategy to enhance the software development 
life cycle through the application of generative AI, we have 
developed an automated agentic workflow leveraging Large 
Language Models (LLMs) to generate unit tests directly from 
source code after having validated the potential in the same 
way as for the RAG system MVP. This solution augments code 
coverage by analyzing existing test cases, the code under test, 
and coverage reports to generate additional test cases that 
verify previously uncovered execution paths. 

The primary goals of our approach include significantly reducing 
the time and resources required for the manual creation and 
maintenance of unit tests, which in turn lowers costs and allows 
developers to focus on core development tasks. By improving 
test coverage, we aim to enhance software quality by identifying 
bugs early in the development process, ultimately leading to 
more robust applications. Furthermore, automating this often 
unpopular task is expected to boost developer satisfaction, as it 
reduces the burden of repetitive testing activities.

However, several challenges must be addressed to realize these 
goals effectively. First, the quality of the generated test cases 
must be sufficiently high to ensure that the effort required for 
revision of the generated code does not exceed that of manual 
implementation. Additionally, the solution must support a 
variety of technology stacks, including different programming 
languages, testing tools, and continuous integration (CI) tools. 
It is also essential for the solution to adapt to company-specific 
conditions, such as unique libraries and coding patterns. Finally, 
the ability to generate meaningful tests for complex software 
systems presents a significant challenge that must be overcome 
to ensure the effectiveness of our automated testing approach.

Solution Approach
The proposed solution design for our automated unit test 
generation tool (TestGPT) is depicted in Figure 4. This workflow 
seamlessly integrates with existing software development tools 
within a project that are used for building the source code, 
execution of test suites, and analysis of code coverage. It is 
designed to be flexible, allowing integration into continuous 
integration (CI) environments or local use as part of the 
developer’s workflow. When started, the agentic workflow 
retrieves the code under test from remote or local source code 
control, along with any pre-existing test cases. This ensures that 
the most current version of the code and its associated tests 
are used in the analysis and generation process. The core of the 
workflow involves AI agents that perform a detailed analysis of 
the existing tests and the code under test. These agents plan 
and generate new test cases through a two-step process:

1.	Initial Test Generation: Tests are initially generated 
through source code analysis. This step involves 
understanding the code’s structure and functionality and the 
structure of existing tests to create relevant new test cases.

2.	Coverage-Driven Test Enhancement: After the initial test 
suite is built and executed, a comprehensive analysis of code 
coverage, including line and branch coverage, is conducted. 
This analysis identifies missed execution paths, which are 
then fed back into the LLM. The LLM generates additional 
test cases aimed at covering these missed branches, thereby 
maximizing coverage improvement.

Existing test cases remain unmodified throughout this process, 
preserving their original intent and functionality.

https://www.zeiss.com/digital-innovation/home.html
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The LLM used for each agent is configurable, allowing the 
selection of the most effective and cost-efficient model for each 
specific task. Figure 5 provides a high-level design overview, 
but each task is executed by an orchestrated group of small 
agents, each optimized for a specific function. This micro-agent 
approach ensures precise and reliable prompting and efficient 
task execution. LangChain in combination with LangGraph is 
employed for building and orchestrating these agents, providing 
a robust framework for managing the complex interactions 
between agents.

A critical aspect of our workflow is ensuring the high quality 
of generated tests. Each test is subjected to a series of quality 
gates, which evaluate the following criteria:

•	 Successful build of the solution
•	 	Correct execution of the test
•	 	Passing of all tests
•	 	Contribution to increased code coverage

github.com, langchain.com

If a test case fails to meet any of these criteria, agents attempt 
to debug and rectify the error, after which the test is re-
evaluated against the quality gates. Only those test cases that 
successfully pass all quality gates are incorporated into the 
enhanced test suite.

In the final step, the enhanced test suite is presented to 
software developers for a manual code review. This serves as 
an additional layer of quality assurance, ensuring that only 
valuable and reliable tests are integrated into the codebase. This 
process not only maintains the integrity of the test suite but also 
maximizes the efficiency and effectiveness of the automated 
testing workflow.

Figure 4: Solution design of TestGPT (simplified)
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Results
The effectiveness of our solution was evaluated using three 
real-world projects from the digital MedTech sector (Figure 5). 
Each project employed a different technology stack, providing 
a comprehensive assessment of the solution’s versatility and 
performance. The projects included:
1.	 A service and manufacturing tool for medical devices 

developed in Python.
2.	 A custom test automation framework for testing medical 

device firmware, utilizing a C++ stack.
3.	 A cloud infrastructure solution built with a TypeScript stack.

The results show a substantial increase in code coverage across 
all three projects (see Table 1). In some cases, coverage values 
of 100% were achieved for specific classes. It is important to 
note that, due to the medical context of the projects, the initial 
test coverage was already relatively high. Despite this, the 
automated test generation solution was able to significantly 
increase unit test coverage. This is particularly noteworthy 
because, as test coverage increases, the effort required to 
manually write additional test cases typically grows significantly. 
If the automated test generation solution is used from the 
beginning of a project where coverage is low, coverage rates 
can be increased more quickly and efficiently.

Project 1 Project 2 Project 3

Initial Test 
Coverage

56% 57% 80%

Achieved Test 
Coverage

75% 77% 90%

Table 1 Coverage increases through automated unit test generation

However, it is important to ensure that the generated test 
cases not only inflate coverage statistics but deliver real value 
for the project. To validate this, the test cases were reviewed 
by senior developers involved in the respective projects. 
The acceptance rate of these test cases was 85% across all 
three projects, indicating a high level of satisfaction with the 
quality and relevance of the tests produced by our solution. 
This demonstrates that the generated tests not only improve 
coverage metrics but actively contribute to the quality of the 
software. 

In terms of cost, the token consumption per accepted test 
case was only €0.5. This cost efficiency is a critical factor for 
the scalability and practicality of the solution in real-world 
applications.

Figure 5 Proof of concept results for the evaluation of TestGPT
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cases
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test case
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We also compared our approach to a similar solution  
(Qodo-Cover from Qodo). Both solutions showed comparable 
performance in terms of coverage increase, with our solution 
having a slight advantage. However, our solution consumed 
approximately 40% fewer input tokens, which can lead to 
significant cost savings when scaled. This efficiency gain is 
primarily attributed to the more effective micro-agent  
approach employed in our workflow.

github.com

The evaluation results demonstrate the great potential of  
GenAI-based solutions to improve code coverage and 
software quality while reducing costs. The combination of 
high acceptance rates, substantial coverage improvements, 
and cost efficiency demonstrates the value of the automated 
agentic workflow for unit test generation in diverse software 
development environments.

Lessons Learned
One significant technical hurdle was the varying requirements 
for test case generation based on the technology stack and 
project specifics. Each programming language and project has 
its own semantics and technical details, including how test 
cases are set up and executed. To address these challenges, 
we leveraged the analysis results from existing test cases and 
code. However, an additional project-specific integration layer 
was necessary on top of the core logic to ensure efficient 
adaptability to new projects.

Another challenge was ensuring seamless integration into 
developers’ workflows. It was crucial that the automated testing 
process enhanced productivity without causing disruptions in 
daily work to facilitate developer acceptance. This was achieved 
through easy configurability for various tool stacks. In digital 
MedTech projects, regulatory considerations are critical. A fully 
automated workflow without human oversight poses significant 
risks. To mitigate this, we ensured that developers manually 
review all generated test cases, maintaining the necessary 
quality and compliance standards, by having a human in the 
loop.

The implementation highlighted the importance of diverse 
skill sets within the team. Expertise in software development, 
software testing, and generative AI technologies is essential. 
Additionally, generative AI engineers are crucial for optimizing 
the AI components within the workflow. Furthermore, involving 
requirements engineers to gather insights from software 
developers regarding the integration of the tool into their daily 
work is vital to ensure that the solution meets user needs and 
enhances productivity effectively.

Next Steps
To further improve our automated agentic workflow for unit 
test generation, several next steps have been identified. First, 
we aim to evaluate the solution across additional projects that 
utilize different technology stacks and application areas. This 
broader evaluation will help us understand the adaptability and 
effectiveness of our approach in diverse contexts.

Improving integration into the developer workflow is also a 
priority, with a focus on implementing features such as IDE 
integration. This enhancement will streamline the testing 
process and make it more accessible for developers.
Additionally, we plan to improve the solution by incorporating 
extra quality gates. This could include an agent-based self-
assessment of the generated test cases and the implementation 
of mutation testing to further ensure the robustness of the tests.

Refining existing agents is another critical step, as it will enhance 
their performance and efficiency in generating high-quality 
test cases. Moreover, we intend to enrich the solution with 
comprehensive knowledge of the code base through a Retrieval-
Augmented Generation (RAG) approach, combined with a 
knowledge graph that encompasses the entire code base and 
project documentation. This enhancement would also facilitate 
the generation of new test cases from scratch.

Furthermore, we aim to extend the solution to update existing 
test cases in response to code changes, thereby reducing 
flakiness and ensuring that the tests remain relevant. Lastly, we 
plan to expand the scope of our solution to include other testing 
levels, such as integration testing, which will provide a more 
comprehensive testing framework and improve overall software 
quality and software development efficiency.

https://www.zeiss.com/digital-innovation/home.html
https://github.com/qodo-ai/qodo-cover
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Before implementation and deployment, successful generative 
AI initiatives in healthcare and life sciences require meticulous 
preparation of proprietary company-internal data. For 
text-based applications leveraging Retrieval-Augmented 
Generation (RAG), this involves collecting, cleaning, and 
structuring internal documentation – e.g., technical manuals, 
SOPs, QMS records, and knowledge base articles – into 
accessible, high-quality corpora. Data must be segmented, 
enriched with metadata, and transformed into embeddings 
using vectorization techniques suitable for semantic search. For 
vision-based applications utilizing fine-tuning of foundation 
models on domain-specific imaging data (e.g., radiology, 
pathology, lab assay scans), organizations must anonymize and 
normalize image data, apply consistent labeling protocols, and 
ensure ground truth accuracy through expert validation. 

nvidia.com, medium.com, softwareone.com

Implementing generative AI in healthcare requires a robust 
technical architecture that supports intensive model training, 
secure and scalable deployment, and long-term maintainability. 
Cloud-based solutions are increasingly favored due to their 
flexibility and scalability, offering access to high-performance 
computing resources such as GPU clusters, vector databases, 
and managed AI services that are essential for training and fine-
tuning deep learning models on clinical, imaging, or laboratory 
data. This setup accelerates experimentation, enables dynamic 
updates, and allows on-demand scaling, making it particularly 
suited for innovation-driven healthcare initiatives.

On-premises deployments, however, remain crucial for 
organizations with strict data governance and security 
requirements. These deployments offer full control over 
infrastructure and data, facilitating compliance with privacy 
regulations such as HIPAA and GDPR. In practice, a hybrid 
architecture where cloud services handle compute-intensive 
tasks and sensitive data is stored and processed locally is  
often the most practical and compliant solution.

To support this architecture, key infrastructure components 
include:
•	 	High-throughput data storage (e.g., Azure Blob Storage, AWS 

S3, or local NAS)
•	 	Scalable compute (e.g., Azure Machine Learning, AWS 

SageMaker, or on-prem GPU nodes)
•	 Vector databases for semantic search (e.g., Pinecone, 

Weaviate, FAISS)
•	 	Secure API gateways and role-based access control for clinical 

and research environments

4. General Implementation Approach

4.1 Data Preparation 4.2 Implementation & Deployment

https://www.zeiss.com/digital-innovation/home.html
https://developer.nvidia.com/blog/mastering-llm-techniques-data-preprocessing/
https://amanattar.medium.com/day-16-preprocessing-data-for-generative-models-4eece4b62201
https://www.softwareone.com/en/blog/articles/2024/03/12/how-to-prepare-data-for-genai
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Architectural Approaches for GenAI-Based Systems
A common architectural pattern emerging in GenAI 
healthcare deployments is the multi-agent system. In this 
approach, specialized AI agents (e.g., for document retrieval, 
summarization, risk classification, or code generation) operate 
independently but coordinate to complete complex tasks such 
as QMS documentation, regulatory submission preparation, 
or clinical trial reporting. They use an LLM inference service 
as the backend engine to process reasoning tasks and 
generate responses for user requests. This modularity supports 
maintainability, parallelism, and scalability across diverse 
workflows (Figure 6). The user can securely interact with the 
multi-agent system via a portal connected to an API gateway.

The agents can obtain specialized data, e.g. from a vector 
database in the data layer, and are often orchestrated via an 
agent orchestrator using frameworks like:
•	 	LangChain – For building LLM-powered pipelines and 

connecting tools such as retrievers, memory, agents, and 
APIs

•	 	LangGraph – For defining graph-based workflows that allow 
conditional logic, retries, and multi-agent interaction patterns

•	 	Semantic Kernel (Microsoft) – For embedding LLMs into 
existing .NET-based healthcare systems

•	 	Haystack – For RAG implementations focused on search and 
question answering over private corpora
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Results

Tasks/
Results

Tasks/
Results

Secure API 
Gateway

Agent 
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Figure 6: Solution architecture for an exemplary multi-agent system for a clinical application
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Cloud Platforms & Deployment Considerations
Cloud ecosystems such as Azure, AWS, and Google Cloud offer 
native support for deploying GenAI-based solutions:
•	 	Azure AI Foundry with integrated OpenAI models and 

Cognitive Search
•	 	AWS Bedrock or SageMaker JumpStart for scalable 

model hosting and data privacy management
•	 	Google Cloud Vertex AI for multimodal model integration 

and healthcare compliance features

For deployment, containerized environments (e.g., Docker, 
Kubernetes, e.g. Azure AKS, AWS EKS) are essential to ensure 
scalability, monitoring, and reliability. These platforms allow 
services such as inference APIs, retrievers, and orchestration 
agents to scale independently based on usage demands, which 
is critical in healthcare contexts where performance and uptime 
are non-negotiable.

To ensure safe and reliable operation, additional best practices 
include:
•	 	Automated monitoring and logging of model inputs/outputs 

(for auditability and safety)
•	 	Rate-limiting and approval steps for high-risk tasks (e.g., 

clinical recommendations)
•	 	Scheduled retraining pipelines to keep the models aligned 

with evolving knowledge bases and clinical guidelines

amazon.com, google.com, langchain.com, medium.com, 
microsoft.com, techtarget.com, xenonstack.com

Maintaining generative AI systems requires continuous 
monitoring, evaluation, and updates to ensure reliability, 
compliance, and performance over time. This involves 
implementing robust DevOps and GenAI Ops practices to 
manage the broader application infrastructure – including APIs, 
vector databases, orchestration logic, and integration layers – as 
well as MLOps or LLMOps practices to govern the lifecycle of 
the underlying models, when not fully managed by third-party 
providers.

Key tasks at the model level (MLOps/LLMOps) include tracking 
model drift, retraining on updated datasets, validating outputs 
for accuracy, fairness, and bias, and ensuring reproducibility 
and governance of model artifacts. In parallel, GenAI-specific 
operations focus on maintaining prompt templates, tuning 
retrieval pipelines, managing grounding data sources, and 
controlling the behavior of large language models – especially in 
Retrieval-Augmented Generation (RAG) or multi-agent systems.

At the system level, DevOps and GenAI Ops responsibilities 
include ensuring infrastructure scalability, monitoring uptime, 
securing APIs, logging user interactions, and managing 
deployment pipelines across cloud or hybrid environments. 

Regular audits and performance evaluations are also essential to 
meet regulatory standards (e.g., EU AI Act, HIPAA, GDPR) and 
institutional IT requirements.

Effective maintenance is not a one-time task but an ongoing, 
multidisciplinary effort that ensures clinical relevance, ethical 
alignment, and operational stability of GenAI-powered solutions 
in healthcare and life sciences.

devops.com, medium.com, ml-ops.org, wandb.ai

4.3 Maintenance

https://www.zeiss.com/digital-innovation/home.html
https://aws.amazon.com/bedrock/
https://cloud.google.com/vertex-ai?hl=en
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https://azure.microsoft.com/en-us/products/ai-services
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https://www.xenonstack.com/blog/generative-ai-healthcare-system
https://devops.com/devops-for-machine-learning-and-arti%EF%AC%81cial-intelligence/
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a-practical-guide-d5bedaa59d78
https://ml-ops.org/content/mlops-principles
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Effective implementation of generative AI in healthcare and  
life science hinges on robust data management strategies that 
ensure both high-quality inputs and rigorous privacy safeguards. 
Organizations must establish comprehensive pipelines for 
data collection, cleaning, and annotation to transform raw 
clinical, imaging, and genomic data into reliable training 
datasets. Advanced preprocessing techniques remove noise and 
standardize formats, while precise annotation enriches these 
datasets with meaningful labels critical for model performance. 
Equally important are privacy-preserving methods – such 
as de-identification and synthetic data generation – that 
enable compliance with regulations like HIPAA and GDPR 
while expanding the dataset without compromising sensitive 
patient information. By integrating these strategies, healthcare 
providers can harness generative AI to enhance diagnostic tools 
and accelerate R&D cycles, ultimately fostering innovation and 
improving patient outcomes. 

persistent.com, xenonstack.com

Regulatory and compliance issues form a critical pillar for 
the successful integration of generative AI into healthcare. 
Organizations must navigate a multifaceted regulatory 
landscape, including the U.S. FDA’s oversight of Software 
as a Medical Device (SaMD), HIPAA’s stringent patient data 
protection requirements, and the comprehensive privacy 
mandates of the EU’s GDPR. Additionally, the emerging EU  
AI Act introduces a risk-based framework specifically regulating 
AI systems, classifying many healthcare applications as high-risk. 
This regulation imposes strict requirements on transparency,  
risk management, data governance, and post-market  
monitoring making compliance a strategic imperative for 
any AI deployment in the European market.

Equally essential is the rigorous validation and verification of AI 
models ensuring that performance metrics such as accuracy, 
sensitivity, and specificity are robustly tested across diverse 
datasets and clinical environments to safeguard against bias 
and overfitting. Building trust and transparency in AI-driven 
decisions further demands that these systems incorporate 
explainability and auditability, enabling clinicians, regulators, 
and patients to understand the rationale behind algorithmic 
outputs. Initiatives such as standardized reporting frameworks 
and continuous monitoring practices are critical to maintain 
ethical oversight and ensurethat AI innovations not only advance 
healthcare outcomes but also adhere to the highest standards of 
safety, accountability, and legal compliance.

binariks.com, ncbi.nlm.nih.gov, medium.com

Generative AI in healthcare holds the potential to revolutionize 
patient care, but its adoption must be tempered by vigilant 
ethical oversight, particularly regarding bias in training data. 
Traditional medical datasets may underrepresent certain 
populations, leading AI systems to reinforce existing disparities. 
For example, a model trained predominantly on data from 
white patients may perform poorly when applied to minority 
populations, thereby risking misdiagnoses or unequal care 
outcomes. Strategies for fairness and accountability include 
diversifying datasets, employing bias-detection algorithms, and 
integrating human-in-the-loop systems that ensure clinicians can 
validate AI outputs. By instituting regular audits, transparent 
reporting standards, and interdisciplinary oversight, healthcare 
organizations can mitigate bias and enhance the trustworthiness 
of AI applications. 

pmc.ncbi.nlm.nih.gov, pmc.ncbi.nlm.nih.gov, bdo.com

5.2 Regulatory & Compliance Issues

5.3 Ethical & Bias Concerns

5.1 Data Requirements & Management

5. Special Considerations in Healthcare & Life Science
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Successful implementation of AI in regulated software 
development relies on a multidisciplinary team that combines 
deep technical expertise with specialized medical and 
regulatory knowledge. Data scientists analyze and prepare 
complex datasets, while medical domain experts ensure 
that the AI’s outputs align with clinical realities and patient 
needs. Software and AI engineers develop, deploy, and 
maintain the systems, and regulatory specialists navigate 
the intricate landscape of compliance and quality standards 
such as HIPAA and FDA regulations. This diversity in expertise 
not only ensures technical robustness but also builds trust 
among stakeholders by safeguarding patient safety and data 
privacy. When it comes to development methodologies, AI-
driven projects in healthcare benefit greatly from an agile 
approach rather than traditional waterfall methods. Agile 
practices facilitate iterative development, allowing teams to 
quickly adapt to feedback from clinical testing and regulatory 
reviews. Continuous integration and continuous delivery (CI/
CD) pipelines further enhance this process by enabling rapid, 
reliable updates to AI-based systems. This ensures that new 
versions are rigorously tested for performance and robustness 
before deployment, reducing downtime and improving overall 
system quality. Quality assurance and testing are critical to the 
success of AI systems in healthcare, where even minor errors 
can have serious consequences. Rigorous testing strategies 
must assess not only the robustness and performance of AI 
systems under various conditions – including edge cases – but 
also their seamless integration with existing clinical workflows. 
Integration testing ensures that AI tools work harmoniously 
with other healthcare IT systems, maintaining data integrity 
and operational efficiency. This comprehensive approach to 
testing safeguards against unexpected system behaviors builds 

confidence in the AI system’s reliability. Finally, effective change 
management and user adoption are essential for integrating AI 
into clinical practice. Training programs tailored for clinicians 
and administrative staff help them understand the capabilities 
and limitations of AI tools, enabling them to use these systems 
confidently and effectively. Clear communication strategies 
that articulate both the benefits and constraints of AI-driven 
solutions are vital to manage expectations and ensure sustained 
user engagement. This focus on education and transparent 
communication fosters a collaborative environment where 
technology enhances patient care without overwhelming end 
users.

BEST PRACTICES

6. Best Practices & Guidelines

Figure 7 Aspects for AI integration into regulated software development

Multidisciplinary Al Team
Data scientists, medical experts, software  
and AI engineers, regulatory specialists

Agile Al Development Process
Iterative cycles, clinical and regulatory 
feedback

Quality Assurance & Testing
System robustness, integration with clinical 
workflows

Change Management & User Adoption
Training, clear communication
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7. Summary

Generative AI is revolutionizing software development by 
significantly boosting efficiency and reducing engineering 
cycle times. In general software projects, developers can now 
document code 45–50% faster, write new code 35–50% faster, 
and refactor code 30–40% faster – yielding potential savings of 
10–15% of total engineering time, which can rise to over 30% 
with strategic integration. 

Key recommendations include structured adoption through 
focused training, upskilling, and robust governance, alongside 
workflow optimization by automating routine coding tasks. 
In healthcare and life science, these benefits are even more 
transformative, where GenAI automates documentation, 
diagnostics, and test case creation, supporting biomedical 
research and predictive modeling with time savings of up to 
55% and cost efficiencies of 6–12% of revenue over a few years. 

deloitte.com, bcg.com, bcg.com, mckinsey.com, bcg.com, 
bain.com

Quantitative benefits from leveraging generative AI in 
regulated software development are multifaceted. For 
instance, organizations have reported significant reductions in 
development cycle time – often up to 40–50% – by automating 
repetitive tasks and streamlining iterative prototyping. These 
gains translate into tangible cost savings and improved 
productivity as engineering teams focus on higher-level 
innovation rather than routine coding or data cleaning. 
Furthermore, enhanced diagnostic accuracy and workflow 
efficiencies have been observed, with AI tools delivering up 
to 20% improvement in key performance metrics by reducing 
errors in image analysis and clinical decision support processes.

Alongside these quantitative metrics, qualitative benefits further 
underscore the transformative impact of AI in healthcare & 
life science. Improved patient outcomes have been achieved 
through more personalized treatment planning and early 
detection of diseases, which in turn help reduce hospital 
readmissions and overall morbidity. Clinician satisfaction is 
enhanced as AI alleviates administrative burdens, allowing 
physicians to devote more time to direct patient care and 
complex decision-making. Additionally, by integrating robust 
compliance frameworks into the development process, 
organizations can streamline regulatory adherence – ensuring 
that AI systems meet stringent standards thus building trust 
among both regulators and end users. 

7.1 Expected Impact 7.2 Quantitative and Qualitative Benefit

https://www.zeiss.com/digital-innovation/home.html
https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/ai-readiness-assessment-in-medtech.html?utm_source=chatgpt.com
https://www.bcg.com/publications/2023/generative-ai-in-medtech?utm_source=chatgpt.com
https://www.bcg.com/publications/2023/how-generative-ai-is-transforming-health-care-sooner-than-expected
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.bcg.com/publications/2023/how-cio-can-leverage-gen-ai-for-software-development
https://www.bain.com/insights/beyond-code-generation-more-efficient-software-development-tech-report-2024/


31zeiss.com/digital-innovation

INTRODUCTION CONCLUSIONSUMMARYCONSIDERATIONSOVERVIEW IMPLEMENTATIONUSE CASES BEST PRACTICES

8. Conclusion

Generative AI is proving to be a transformative force in 
regulated software development, delivering both quantitative 
and qualitative benefits that directly enhance patient care and 
organizational performance. Our analysis shows that GenAI 
can dramatically reduce development cycle times and lower 
costs by automating routine tasks. These efficiency gains 
are complemented by substantial improvements in patient 
outcomes and clinician satisfaction – allowing healthcare 
providers to focus on delivering empathetic, personalized 

care. In today’s competitive environment, the strategic value of 
integrating GenAI solutions extends beyond mere cost savings; 
it also fortifies regulatory compliance and fosters innovation, 
giving organizations a significant edge in the rapidly evolving 
healthcare landscape. We encourage stakeholders to explore 
these transformative GenAI solutions – whether through pilot 
programs, collaborative research, or bespoke AI integration 
strategies – to drive measurable improvements in both 
operational performance and patient care.

Now is the moment for in healthcare & life science 
innovators to leverage GenAI – accelerating innovation, 
enhancing patient outcomes, & achieving strategic advantage. 
Contact us for further collaboration, detailed discussions, or 
pilot initiatives to leverage GenAI in your organization.

https://www.zeiss.com/digital-innovation/home.html
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