Interactive Tutorials - Spinning Disk Fundamentals

Interactive Tutorials

Superresolution Microscopy

Photoactivation Localization Microscopy (PALM)

Photoactivated localization microscopy (PALM) is a superresolution technique that dramatically improves the spatial resolution of the optical microscope by at least an order of magnitude (featuring 10 to 20 nanometer resolution), which enables the investigation of biological processes at close to the molecular scale. The technique relies on the controlled activation and sampling of sparse subsets of photoconvertable fluorescent molecules, either synthetic or genetically-encoded. This interactive tutorial explores the sequential steps involved in creating a PALM image.

Using photoactivatable fluorescent proteins, it is possible to selectively switch on thousands of sparse subsets of molecules in a sequential manner. The basic principle behind PALM is to start with the vast majority of the molecules in the inactive state (in effect, not contributing fluorescence emission). A small fraction (less than 1 percent) is photoactivated or photoconverted using a brief pulse of ultraviolet or violet light to render that subset fluorescent. The activated molecules are then imaged and localized to produce nanometer-level precision coordinates, followed by removal from the larger set of unactivated molecules by photobleaching. In the next step, a second fraction of molecules is photoactivated, localized, and eliminated by photobleaching. The process is repeated many thousands of times until the molecular coordinates of all labeled molecules are obtained. The PALM image is a composite of all the single molecule coordinates. As new fluorescent probes for PALM are developed, the photoconversion and readout wavelengths are likely to ultimately span the entire ultraviolet, visible, and near-infrared spectral regions.

Contributing Authors

Adam M. Rainey, Tony B. Gines and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.

We use cookies on this site. Cookies are small text files that are stored on your computer by websites. Cookies are widely used and help to optimize the pages that you view. By using this site, you agree to their use. more