Our eyes – our windows to the world

Our eyes function like a camera in which numerous parts work together perfectly. This is good news, because vision is our most important sense.

For most people, it’s a matter of course: You open your eyes and you see the world. When the alarm clock goes off, you see the red numbers, the colors of the bedspread and your pajamas, the green leaves on the tree outside the window and the ceiling, which could probably use another coat of paint. Vision supplies us with 80% of all the impressions from our surroundings.

The average human eye has a diameter of 1 inch and weighs just about 7.5 grams, or a quarter of an ounce. It is composed of 6 grams of water and 1.5 grams of cell tissue - very little material for such a powerful and lively camera. It has not yet been explained precisely how the two marble-shaped organs manage to project so perfect an image of the world around us into our consciousness.

Our eyes – our windows to the world

The basic functions have been explained. Like a camera, the eyes have their very own optical system. The most important components of the eye are:


  • The cornea
  • The sclera
  • The iris and the pupil
  • The posterior and anterior chambers
  • The lens of the eye
  • The ciliary body
  • The vitreous body (corpus vitreum)
  • The retina
  • The choroid(chorioidea)
  • The optic nerve (nervus opticus)
  • The fovea (fovea centralis)


Detailed description of how the optics of the eyes function

Regardless of whether you’re looking at the latest fashion magazine or watching an exciting football game on television, the light rays reflecting off the magazine or the television screen penetrate our eyes. The first thing they strike is the cornea. It is visible and palpable from the outside and has to deal with dust off the street as well as toxic fumes.

After the cornea, the light rays traverse the anterior eye chamber and the pupil in the iris. The Germans named the iris “Regenbogenhaut” (rainbow membrane) for its beautiful colors. The iris, as seen from the outside, determines our eye color. A dark eye has many pigments, a light eye has fewer.

The anterior chamber of the eye is filled with a fluid known as the aqueous humor. Our cornea and the lens of our eye are nourished by the three cubic centimeters of this fluid produced daily. A sophisticated drainage system ensures that fluid that is no longer needed drains smoothly.

The task of the iris is equivalent to that of the aperture of a camera. It dilates or shrinks the pupil. It can thus accurately regulate how many light rays reach the eye. It can expand or contract depending on the brightness. In extreme brightness, it can shrink down to 1.5 millimeters. On a dark night, it can open up to 8 millimeters.

How does vision actually work?

How does vision actually work?

The light rays then penetrate further, all the way to the lens of the eye. It has a diameter of about 9 millimeters and is 4 millimeters thick. It is enveloped by the ciliary muscle. It is rather like the zoom in a camera.


When you look at something in the distance, the muscle is relatively relaxed. But when you look at your watch, the muscle tightens. As a result, the lens curves and the refraction power increases.


This is measured in diopters. Close objects can be reproduced very sharply by the curved lens. Experts call this process accommodation. The ability to accommodate is very well pronounced, particularly in a person’s younger years. Twelve-year-olds with healthy eyes can see objects extremely sharply up to a distance of 3 inches. In one’s forties, this distance is 6 inches, and in one’s seventies, it’s only about 40 inches.


By the way: Ninety-five percent of our visual acuity conglomerates in one tiny point in the retina. This minute point with a diameter of only 2 millimeters is called the macula, or the yellow spot. In the fovea – experts call it the central macula - the number of cones responsible for color vision is very high. The point of sharpest vision is thus located in our retina.


Also found in the retina are the rods that are responsible for vision at twilight and at night. The vitreous humor fills in the rear part of the eye and consists of a gel-like substance. It protects and supports the retina and eye. It has an elastic structure and functions like a shock absorber if pressure is suddenly exerted on the eyeball.

And what happens in the retina?

The light finally strikes the retina. The most important components of the retina are the aforementioned rods and cones. They are photoreceptors, and everybody has just under 130 million of them.

The two have very different tasks: The over 120 million rods produce light/dark contrast and supply gray tones. The seven million cones, meanwhile, give us the gift of the beautiful colors of the world – but only when they receive ample light. As the saying goes, all cats are still gray in the dark.

We humans and most primates have three different types of cones. This is why we can distinguish between red, green and blue. These are known as the primary colors, and many other colors can be created from them. We humans perceive electromagnetic radiation with wavelengths between 380 and 780 nanometers as light. For example: A wavelength between 650 and 700 nanometers triggers the signal "red."

The optic nerve starts behind the eye and extends to the vision center in the brain. This is where visual information is relayed from the retina. The vision center is located at the back of the head, where the visual information is processed. An upside-down image forms there, and the brain – or the cerebral cortex to be more precise – flips it. The actual process of seeing thus does not occur in the eye – it is our brain that provides the picture show.