Nobel prize medal
About Us

Nobel Prize Laureates

Prominent scientists put their trust in ZEISS microscopes when conducting research. Robert Koch, who discovered the bacterium that causes tuberculosis in 1900, was just one of them.

To this very day, researchers from all over the world use light, electron/ion and X-ray microscopes from ZEISS to make even the smallest structures and processes visible. Their achievements have conferred the greatest benefit to humankind.

Nobel Prizes from 1905 to 1995

Robert Koch, Nobel Prize for Medicine, 1905

1905: Robert Koch, Nobel Prize for Medicine

Koch is considered the founder of modern bacteriology. In the eighteen-eighties, the country doctor discovered the bacilli that caused tuberculosis and cholera. In a letter to Carl Zeiss he wrote, "A large part of my success I owe to your excellent microscopes". In 1904, he received the 10,000th ZEISS objective, a homogeneous immersion system, as a present.

Santiago Ramón y Cajal and Camillo Golgi, Nobel Prize for Physiology or Medicine, 1906

1906: Santiago Ramón y Cajal and Camillo Golgi, Nobel Prize for Physiology or Medicine

Santiago Ramón y Cajal was a Spanish neuroscientist and histologist. He was awarded the Nobel Prize in Physiology or Medicine in 1906 with the Italian physician and scientist Camillo Golgi for their studies of the structure of the nervous system. Cajal used advanced devices of its time, inter alia a ZEISS microscope.

Allvar Gullstrand, Nobel Prize for Physiology or Medicine, 1911

1911: Allvar Gullstrand, Nobel Prize for Physiology or Medicine

The Swedish ophthalmologist Allvar Gullstrand is considered one of the founders of modern ophthalmology. In 1911 he was awarded the Nobel Prize in Physiology or Medicine for his work, together with Moritz von Rohr, carried out for dioptric apparatus of the eye, with which they made the correction of refractive errors of the eye through the lens on a scientific basis.

Richard Zsigmondy, Nobel Prize for Chemistry, 1925

1925: Richard Zsigmondy, Nobel Prize for Chemistry

As a professor at Goettingen, Zsigmondy conducted pioneering research in colloid chemistry. He invented the ultramicroscope in 1903, and two types of membrane filters in 1918 and 1922. Ultramicroscopy after Siedentopf and Zsigmondy makes visible submicroscopic particles whose linear extension is below the microscope's resolution limit.

Frits Zernike, Nobel Prize for Physics, 1953

1953: Frits Zernike, Nobel Prize for Physics

The Dutch physicist, when experimenting with reflection gratings in 1930, discovered that he could observe the phase position of each ray, and sought to utilize the effect for microscopy. Together with ZEISS he developed the first phase-contrast microscope, the prototype of which was made in 1936. It allowed the examination of living cells without harmful chemical staining.

Manfred Eigen, Nobel Prize for Chemistry, 1967

1967: Manfred Eigen, Nobel Prize for Chemistry

The molecular biologist and director of the Max Planck Institute in Goettingen developed a method of keeping track of extremely fast chemical and biochemical processes. In a joint effort, Eigen, his Swedish colleague Rudolf Riegler and ZEISS succeeded in 1993 to create ConfoCor, the first commercial fluorescence correlation spectrometer.

Erwin Neher and Bert Sakmann, Nobel Prize for Medicine, 1991

1991: Erwin Neher and Bert Sakmann, Nobel Prize for Medicine

Together with Professor Sakman, he discovered the fundamental mechanism of communication between cells. Their studies included electrophysiological examinations of ion channels by means of the patch clamp technique.

Christiane Nüsslein-Volhard, Nobel Prize for Physiology or Medicine, 1995

1995: Christiane Nüsslein-Volhard, Nobel Prize for Physiology or Medicine

The German biologist Nüsslein-Volhard studies the genetic control of embryonic development with ZEISS microscopes. The focus of her scientific work was the question of how the complex organisms of humans and animals develop from an egg cell and what the basic mechanisms are.

Nobel Prizes from 1999 to 2008

Günter Blobel, Nobel Prize for Physiology or Medicine, 1999

1999: Günter Blobel, Nobel Prize for Physiology or Medicine

Günter Blobel has increased the understanding of how proteins are transported and arrive at their destination. His research has contributed to a better understanding of several hereditary diseases which are due to the lack of protein transport. Günter Blobel works at the Howard Hughes Medical Institute with ZEISS microscopes, e.g. Axiophot and Axiovert.

Ahmed H. Zewail, Nobel Prize for Chemistry, 1999

1999: Ahmed H. Zewail, Nobel Prize for Chemistry

The winner of the Carl Zeiss Research Award 1992 is working in the field of femtosecond spectroscopy. He made very fast chemical reactions at single molecules directly observable with high spatial and temporal resolution. Zewail was awarded the 1999 Nobel Prize in Chemistry for his work on femtochemistry.

Eric  A. Cornell, Nobel Prize for Physics, 2001

2001: Eric A. Cornell, Nobel Prize for Physics

Cornell is an American physicist who, along with Carl E. Wieman, was able to synthesize the first Bose–Einstein condensate in 1995. Therefore Cornell, Wieman, and Wolfgang Ketterle shared the Nobel Prize in Physics in 2001. Before he received the Nobel Prize Cornell was awarded the Carl Zeiss Research Award.

Sir Paul M. Nurse, Leland H. Hartwell and Timothy Hunt, Nobel Prize for Physiology or Medicine, 2001

2001: Sir Paul M. Nurse, Leland H. Hartwell and Timothy Hunt, Nobel Prize for Physiology or Medicine

Nurse, Hartwell and Hunt were awarded jointly for their pioneering, fundamental discoveries of critical components and processes which control the cell cycle - the growth and proliferation of cells.

Sydney Brenner, H. Robert Horvitz and John E. Sulston, Nobel Prize for Chemistry, 2002

2002: Sydney Brenner, H. Robert Horvitz and John E. Sulston, Nobel Prize for Chemistry

Brenner, Horvitz and Sulston identified genes in the nematode Caenorhabditis elegans that are responsible for the regulation of organ development and programmed cell death (apoptosis).

Craig Mello and Andrew Fire, Nobel Prize for Physiology or Medicine, 2006

2006: Craig Mello and Andrew Fire, Nobel Prize for Physiology or Medicine

Craig Mello and Andrew were awarded the Nobel Prize for Physiology or Medicine in 2006 for the discovery of RNA interference. In 1998 they published a paper in Nature detailing how tiny snippets of RNA fool the cell into destroying the gene's messenger RNA (mRNA) before it can produce a protein - effectively shutting specific genes down.

Harald zur Hausen, Nobel Prize for Physiology or Medicine, 2008

2008: Harald zur Hausen, Nobel Prize for Physiology or Medicine

With dogged persistence, physician zur Hausen worked on his theory that viruses can cause cancer – contrary to prevailing doctrines. He received the Nobel Prize for Medicine for proving his theory and thus destroying a medical dogma. Harald zur Hausen worked with a ZEISS transmission electron microscope.

Osamu Shimomura, Martin Chalfie and Roger Tsien, Nobel Prize for Chemistry, 2008

2008: Osamu Shimomura, Martin Chalfie and Roger Tsien, Nobel Prize for Chemistry

Osamu Shimomura, Professor Emeritus at Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts was awarded the Nobel Prize in Chemistry in 2008 together with two American scientists: Martin Chalfie of Columbia University and Roger Tsien of the University of California-San Diego. They discovered and developed the green fluorescent protein (GFP) for use in cell biology. By fluorescence of GFP, the spatial and temporal distribution of other proteins in living cells, tissues or organisms can be observed directly, thus laying the foundation for modern fluorescence microscopy.

Nobel Prizes from 2010 to 2018

Andre Geim and Konstantin Novoselov, Nobel Prize for Physics, 2010

2010: Andre Geim and Konstantin Novoselov, Nobel Prize for Physics

Sir Andre Geim, a physicist working at the University of Manchester, was awarded the 2010 Nobel Prize in Physics together with the Russian physicist Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene".

Dan Shechtman, Nobel Prize for Chemistry, 2011

2011: Dan Shechtman, Nobel Prize for Chemistry

Dan Shechtman, 70, is a professor of materials science at the Israel Institute of Technology in Haifa, Israel. He was awarded the 2011 Nobel Prize in Chemistry for "the discovery of quasicrystals". Quasicrystalline materials could be used in a large number of applications, including the formation of durable steel used for fine instrumentation, and non-stick insulation for electrical wires and cooking equipment.

Sir John B. Gurdon and Shinya Yamanaka, Nobel Prize for Physiology or Medicine, 2012

2012: Sir John B. Gurdon and Shinya Yamanaka, Nobel Prize for Physiology or Medicine

Sir John B. Gurdon and Shinya Yamanaka were jointly awarded the Nobel Prize in Physiology or Medicine in 2012 "for the discovery that mature cells can be reprogrammed to become pluripotent". Stem cells could replace destroyed tissue in future.
Gurdon uses ZEISS confocal microscopes for research. Working with ZEISS laser microdissection systems Yamanaka extracted genetic material free from contamination. ZEISS has created protocols for LCM applications together with him.

Eric Betzig, Stefan W. Hell and William E. Moerner,  Nobel Prize for Chemistry, 2014

2014: Eric Betzig, Stefan W. Hell and William E. Moerner, Nobel Prize for Chemistry

The break-through work of the three laureates in developing superresolution microscopy methods contributed significantly to groundbreaking scientific research over the past 10 years. With this Nobel Prize the Nobel Committee recognizes the importance of superresolution light microscopy for advances in research and science. ZEISS exclusively licensed PALM, developed jointly by Eric Betzig and Harald Hess, as a superresolution technique for single-molecule localization with the ELYRA PS.1 microscope system.

John O'Keefe, May-Britt Moser and Edvard I. Moser, Nobel Prize for Physiology or Medicine, 2014

2014: John O'Keefe, May-Britt Moser and Edvard I. Moser, Nobel Prize for Physiology or Medicine

The discoveries of John O´Keefe, May-Britt Moser and Edvard Moser have solved a problem that has occupied philosophers and scientists for centuries – how does the brain create a map of the space surrounding us and how can we navigate our way through a complex environment? May-Britt and Edvard Moser used various ZEISS light and stereo microscopes for their discovery and ongoing research of the so-called “grid cells” of the nervous system.

Arthur Ashkin, Gérard Mourou, Donna Strickland, Nobel Prize in Physics, 2018

2018: Arthur Ashkin, Gérard Mourou, Donna Strickland, Nobel Prize in Physics

Arthur Ashkin invented optical tweezers that grab particles, atoms, molecules, and living cells with their laser beam fingers.
Based on this technology, ZEISS has developed PALM MicroTweezers – an optical tweezers system that allows precise, contact-free cell manipulation as well as the trapping, moving, and sorting of microscopic particles such as beads or even subcellular particles.


Share this article