ZEISS Crossbeam
FIB-SEM for High Throughput 3D Analysis and Sample Preparation
Combine imaging and analytical performance of a high resolution field emission scanning electron microscope (FE-SEM) with the processing ability of a next-generation focused ion beam (FIB). You may be working in a multi-user facility, as an academic or in an industrial lab. Take advantage of ZEISS Crossbeam’s modular platform concept and upgrade your system with growing needs, e.g. with the LaserFIB for massive material ablation. During milling, imaging or when performing 3D analytics Crossbeam will speed up your FIB applications.
TEM Lamella Preparation
Investigate the Crystal Structure of NanoSQUIDS
Maximize Your SEM Insights
- Extract true sample information from your high resolution SEM images using Gemini electron optics.
- Count on the SEM performance of your Crossbeam for 2D surface sensitive images or when performing 3D tomography.
- Benefit from high resolution, contrast and signal-to-noise ratios, even when using very low accelerating voltages.
- Characterize your sample comprehensively with a range of detectors. Get pure materials contrast with the unique Inlens EsB detector.
- Investigate non-conductive specimens undisturbed by charging artifacts.
Increase Your FIB Sample Throughput
- Profit from speed and precision of intelligent FIB scanning strategies for material removal and perform your experiments up to 40% faster than before.
- The Ion-sculptor FIB column introduces a new way of FIB-processing: by minimizing sample damage you’ll maximize sample quality and perform experiments faster at the same time.
- Manipulate your samples precisely and fast by using up to 100 nA current without compromising FIB resolution.
- When preparing TEM samples use the low voltage capabilities of the Ion-sculptor FIB: get ultra-thin samples while keeping amorphization damage at a minimum.
Experience Best 3D Resolution in Your FIB-SEM Analysis
- Enjoy the benefits of integrated 3D analysis for EDS and EBSD investigations.
- During milling, imaging or when performing 3D analytics Crossbeam will speed up your FIB applications.
- Expand the capacity of your Crossbeam with ZEISS Atlas 5, the market-leading package for fast, precise tomography.
- Perform EDS and EBSD analysis during tomography runs with the integrated 3D Analytics module of Atlas 5.
- Profit from best 3D resolution and leading isotropic voxel size in FIB-SEM tomography. Probe less than 3 nm in depth and produce surface sensitive, material contrast images using the Inlens EsB detector.
- Save time by collecting your serial section images while milling. Take advantage of trackable voxel sizes and automated routines for active control of image quality.
Crossbeam Family
Discover Workflows on Crossbeam
Explore How Guided Workflows Help You to Tailor Laser, TEM Lamella Preparation and Correlated Cryo Workflows
Crossbeam laser Workflow
Rapidly access deeply buried regions of interest, execute correlated workflows across multiple length scales and acquire better sample representativity with large-volume analysis. Perform 3D imaging and analytics e.g. EDS or EBSD. Now, semi-automated devices enable you to save time and increase your throughput even more.
Add a femtosecond laser to your Crossbeam and benefit from site-specific, ultra-fast sample preparation. Keep your FIB-SEM chamber clean and operate the system remotely with a semi-automated workflow when needed.
Your benefits:
- Gain rapid access to deeply buried structures
- Benefit from minimal damage and heat affected zones due to femtosecond laser pulses in a controlled vacuum environment
- Perform laser work in a dedicated integrated chamber to maintain cleanliness of your FIB-SEM main chamber and detectors
- Automate laser processing, polishing, cleaning and transfer of the sample to the FIB chamber
- Prepare multiple samples from cross-sections over TEM lamellae to pillar arrays, and work efficiently by using pre-installed recipes for different materials
The Workflow for TEM Lamella Preparation
TEM lamella preparation is essential for almost any FIB-SEM user. ZEISS offers an automated workflow for site-specific preparation. The resulting lamellae are ideally suited for high resolution TEM and STEM imaging and analysis at atomic resolution. Navigate to the specimen’s ROI, extract your TEM lamella including ROI from your bulk sample, perform the bulk milling or trenching step, and finalize the workflow with lift-out and thinning where appropriate.
TEM Lamella Preparation and Volume Imaging under Cryogenic Conditions
Cryogenic microscopy allows the examination of cellular structures in their near-to-native state. However, users face complex challenges, such as preparation, devitrification, ice contamination, loss of samples or correlation across imaging modalities. ZEISS Correlative Cryo Workflow connects widefield, laser scanning, and focused ion beam scanning electron microscopy in a seamless and easy-to-use procedure. Hardware and software are optimized for the needs of correlative cryogenic workflows, from localization of fluorescent macromolecules to high-contrast volume imaging and on-grid lamella thinning for cryo electron tomography.
Gain Insights Into the Technology of Crossbeam
Find Out All Details about the Two SEM Columns, Gemini 1 & 2, and the Fib Column, Ion-Sculptor.
Discover Surface Sensitive Imaging, Powerful Analytics and a New Way of Fib-Machining.
-
SEM Electron Optics
Choose between Two Columns
The FE-SEM column of Crossbeams is based on Gemini 1 VP column electron optics as all ZEISS FE-SEMs. Decide on the Gemini VP column of Crossbeam 350 or the Gemini 2 column of Crossbeam 550.
Field emission SEMs are designed for high resolution imaging. Key to the performance of a field emission SEM is its electron optical column. Gemini technology comes with all ZEISS FE-SEMs and FIB-SEMs: it is tailored for excellent resolution on any sample, especially at low accelerating voltages, for complete and efficient detection, and ease-of-use.
Gemini Optics Is Characterized by Three Main Components
- The Gemini objective lens design combines electrostatic and magnetic fields to maximize optical performance while reducing field influences at the sample to a minimum. This enables excellent imaging, even on challenging samples such as magnetic materials.
- Gemini beam booster technology, an integrated beam deceleration, guarantees small probe sizes and high signal-to-noise ratios.
- The Gemini Inlens detection concept ensures efficient signal detection by detecting secondary (SE) and backscattered (BSE) electrons in parallel minimizing time-to-image.
Benefits for Your FIB-SEM Applications
- Long-term stability of the SEM alignment and the effortless way it adjusts all system parameters such as probe current and acceleration voltage
- Achieve distortion-free, high resolution imaging even over large fields of view with the help of the near magnetic-field free optics
- Tilt the specimen without influencing the electron optical performance
Crossbeam 350 with Gemini 1 VP
- ✔ Maximum sample flexibility in multi-purpose environments offering variable pressure (VP) as an option.
- ✔ Enabling in situ experiments with outgassing or charging samples.
- ✔ Unique Gemini material contrast with the Inlens EsB detector
Crossbeam 550 with Gemini 2
- ✔ High resolution even at low voltage and high current thanks to the double condenser system.
- ✔ More information in less time with high resolution imaging and fast analytics.
- ✔ Unique topographical and material contrast with simultaneous Inlens SE and EsB (energy selective backscatter) imaging
-
Profit from Surface Sensitive Imaging
Today’s SEM applications demand high resolution imaging at low landing energy as a standard. It is essential for:
- beam sensitive samples
- non-conductive materials
- gaining true sample surface information without undesirable background signal from deeper sample layers
The novel Gemini optics are optimized for resolutions at low and very low voltages and for contrast enhancement; it is characterized by the included high gun resolution mode and the optional Tandem decel.
- The high gun resolution mode improves image resolution by reducing the primary energy width by 30% thus minimizing the chromatic aberration.
Tandem decel - How it works
Tandem decel, a two-step deceleration mode, combines the beam booster technology with a high negative bias voltage that is applied to the sample: the electrons of the primary electron beam are decelerated; thus, the landing energy is effectively reduced. Tandem decel, offered for Crossbeam 350/550, can be used in two different modes. Either apply a variable negative bias voltage between 50 V and 100 V to enhance the contrast of your images or apply a negative bias voltage between 1 kV and 5 kV and improve the low kV resolution of your images.
-
Discover a New Way of FIB Processing
The Ion-sculptor FIB column speeds up your FIB work without compromising machining precision and lets you benefit of its low voltage performance for any sample.
The Crossbeam Family carries the next-generation focused ion beam column, Ion-sculptor, featuring high currents for high throughput and excellent low voltage performance for high sample quality.
- Maximize sample quality by using the low voltage capabilities of the Ion-sculptor FIB column
- Minimize amorphization of your specimens and get the best results after thinning
- Get precise and reproducible results with maximum stability
- Accelerate your FIB applications with fast probe current exchanges
- Perform high throughput experiments thanks to beam currents of up to 100 nA
- Achieve exceptional FIB resolution of less than 3 nm
- The Crossbeam family comes with automatic FIB emission recovery for long-term experiment
Applications in Materials Science
Develop new materials, understand and tailor their physical and chemical properties. Explore applications examples from nanoscience, engineering and energy materials. See how Crossbeam helps you to prepare, image and analyze your samples in 2D and 3D.
Caption: Fresnel zone plate, example for nanopatterning.
Applications in Electronics & Semiconductor
Discover Crossbeam applications in the field of electronics and semiconductor manufacturing.
Applications in Life Sciences
Discover Crossbeam applications in various areas of life science research.
Accessories
Visualization and Analysis Software: ZEISS Recommends Dragonfly Pro
An advanced analysis and visualization software solution for your 3D data acquired by a variety of technologies including X-ray, FIB-SEM, and SEM. Available exclusively through ZEISS, ORS Dragonfly Pro offers an intuitive, complete, and customizable toolkit for visualization and analysis of large 3D grayscale data. Dragonfly Pro allows for navigation, annotation, creation of media files, including video production, of your 3D data. Perform image processing, segmentation, and object analysis to quantify your results.
Introducing ToF-SIMS Enables High Throughput in 3D Analysis
Add the ToF-SIMS (time of flight secondary ion mass spectrometry) spectrometer to your Crossbeam 350 or Crossbeam 550 and analyze trace elements, light elements (e.g. lithium), and isotopes. Profit from sensitive and comprehensive analyses in 3D. Perform elemental mapping and depth profiling. Benefit from parallel detection of atomic and molecular ions down to the ppm level, achieve resolutions better than 35 nm in lateral direction and 20 nm in depth. Retrieve any signal from the ROI post-mortem.