超微細構造の高分解能イメージング – 電子顕微鏡による生物試料の観察
ライフサイエンスの顕微鏡アプリケーション

超微細構造の高分解能イメージング

電子顕微鏡による生物試料の観察

電子顕微鏡のみが提供できる最高レベルの分解能が必要とされるのは、たとえば、試料の奥深くにある小さな構造の3Dイメージング、試料本来の超微細構造を観察するような場合です。ZEISSの電子顕微鏡を使用することで、細胞研究や癌研究、微生物学やウイルス学、免疫学、神経科学、発生学、発生生物学、植物科学において、生物試料の構造を高分解能でイメージングすることが可能となります。

マウス脳、オスミウム・チオカルボヒドラジド染色、ZEISS GeminiSEM 300でイメージング。試料ご提供:C. Genoud, FMI, Basel, Switzerland
マウス脳、オスミウム・チオカルボヒドラジド染色、ZEISS GeminiSEM 300でイメージング。試料ご提供:C. Genoud, FMI, Basel, Switzerland

マウス脳、オスミウム・チオカルボヒドラジド染色、ZEISS GeminiSEM 300でイメージング。
試料ご提供:C. Genoud, FMI, Basel, Switzerland

マウス脳、オスミウム・チオカルボヒドラジド染色、ZEISS GeminiSEM 300でイメージング。
試料ご提供:C. Genoud, FMI, Basel, Switzerland

超微細構造の高分解能イメージング

ZEISS GeminiSEMシリーズやZEISS Sigmaシリーズなどの電界放出型SEM(FE-SEM)を使用することで、サブナノレベルの高分解能で高コントラストのイメージングを行えます。FE-SEMでは、樹脂包埋試料の超薄切片内の細胞内構造、細胞小器官、ウイルスをTEMレベルで正確に視覚化できます。

マウスの外眼筋と再構築された末梢神経。FE-SEMのブロックフェイスイメージングによって生成された3Dデータ。ご提供:P. Munro, University College London, United Kingdom

事前セクショニング不要の高分解能3Dイメージング

高分解能3Dイメージングにより、コネクトミクスでの単細胞や組織の観察、および発生生物学での生物全体の観察において、詳細な構造情報を得ることができます。

ZEISS FE-SEM用の3Viewを使用したブロックフェイスイメージングでは、試料ブロックをチェンバー内で直接スライスし、その度にイメージングを行います。この方法によって、最小Z軸スライス厚15 nmで数百万立法マイクロメートルまでの大きな3D像を観察することができます。

また、ZEISS Crossbeamの集束イオンビームを使用した加工とFIB-SEMトモグラフィー解析により、最小Z軸分解能3 nmの超解像3Dイメージングが可能です。

  • 高分解能でイメージングしたセンチュウ全体の3D形態。ご提供:A. Steyer and Y. Schwab, European Molecular Biology Laboratory, Germany, and S. Markert and C. Stigloher, University of Wuerzburg, Germany
マウス脳切片、最高取得速度1.22ギガピクセル/秒。
マウス脳切片、最高取得速度1.22ギガピクセル/秒。

マウス脳切片、最高取得速度1.22ギガピクセル/秒。
ご提供:J. Lichtman, Harvard University, Cambridge, MA, USA

マウス脳切片、最高取得速度1.22ギガピクセル/秒。
ご提供:J. Lichtman, Harvard University, Cambridge, MA, USA

かってない速度での大型組織切片の走査型電子顕微鏡観察

試料の広範囲をイメージングするため、ZEISSは新たなマルチビームSEM技術であるZEISS MultiSEMシリーズを開発しました。試料調整を自動化することで、MultiSEMはアレイトモグラフィー解析による超高分解能3Dデータ取得の劇的な高速化に成功しました。コネクトミクス解析に使われるような大きな脳組織(1 mm³)などの高分解能マッピングが可能となりました。

C. elegansの有糸分裂細胞の観察。細胞構造の再構築。ご提供:Kedar Narayan, National Cancer Institute / NIH and Frederick National Laboratory for Cancer Research

クライオFE-SEMを使用した実際に近い構造と機能の観察

試料の本来の形態を観察するには、化学固定ではなく凍結が必要です。凍結試料を使ったワークフローに適応するZEISSの電界放出型SEM(FE-SEM)と集束イオンビームSEM(FIB-SEM)により、繊細な試料に対する優れた低電圧イメージングが可能になります。ZEISSが開発したCorrelative Cryo Workflowは、ワイドフィールド顕微鏡、レーザー走査型顕微鏡、FIB-SEMをシームレスに組み合わせ、使いやすい手順にしたものです。

マウス舌の断面像、SEMの可変圧力モードでイメージング。
マウス舌の断面像、SEMの可変圧力モードでイメージング。

マウス舌の断面像、SEMの可変圧力モードでイメージング。
ご提供:R. Reimer, Heinrich Pette Institute, Germany

マウス舌の断面像、SEMの可変圧力モードでイメージング。
ご提供:R. Reimer, Heinrich Pette Institute, Germany

トポグラフィーイメージング

ZEISS EVOのようなSEMやZEISS SigmaのようなFE-SEMを使うことで、コーティング処理や複雑な試料調整をすることなく、様々な試料の表面形態の卓越したイメージングが可能です。コーティング処理をしていない昆虫や骨試料、水分を含む試料、グリッド切片、樹脂包埋ブロック、陶化試料を撮影できます。可変圧力によりチェンバー内の環境を制御し、低真空で試料のイメージングを行えます。

  • コーティングされていない蝶(Cethosia biblis)の羽、SEMの可変圧力モードでイメージング。

    コーティングされていない蝶(Cethosia biblis)の羽、SEMの可変圧力モードでイメージング。

  • ハイビスカスの葉についた花粉、SEMの可変圧力モードでイメージング。

    ハイビスカスの葉についた花粉、SEMの可変圧力モードでイメージング。

ZEISS Microscopyへのお問い合わせ

お問い合わせ先

フォームを読み込み中…

/ 4
次のステップ:
  • ステップ1
  • ステップ2
  • ステップ3
お問い合わせ
必須入力項目
任意入力項目

ZEISSでのデータ処理の詳細につきましては、データプライバシーに関するお知らせをご覧ください

  • 1

    * このページに掲載されている画像は、研究内容を表すものです。Axioscan 7スライドスキャナーで取得した情報に基づいて、ZEISSが患者の疾患の診断や治療の推奨を行うことは決してありません。