连接组学——厘清错综复杂的神经网络
生命科学领域的显微镜应用

连接组学

厘清错综复杂的神经网络

从事连接组学方面的工作意味着要创建大脑和神经系统网络的综合地图。其研究包括识别和测量每个神经元的所有组成部分:细胞体、树突、轴突路径和分支模式,并将这些数据与整个神经回路的突触和间隙连接相结合。

因此,您的显微镜面临着巨大的挑战,它需要在大量致密复杂组织内进行长距离亚微米分辨率成像。

小鼠大脑突触,使用FIB-SEM断层扫描成像
小鼠大脑突触,使用FIB-SEM断层扫描成像

小鼠大脑突触,使用FIB-SEM断层扫描成像。由西班牙马德里理工大学的A.Merchán Pérez、J.R. Rodriguez、L. Alonso-Nanclares、J. DeFelipe提供

小鼠大脑突触,使用FIB-SEM断层扫描成像。由西班牙马德里理工大学的A.Merchán Pérez、J.R. Rodriguez、L. Alonso-Nanclares、J. DeFelipe提供

神经元的超分辨率三维成像

扫描电子显微镜(SEM)可提供对神经元连接进行可视化所需的极佳分辨率。使用集成了3View的蔡司GeminiSEM或蔡司Sigma系列电子显微镜,可通过连续切面成像实现三维超分辨率成像;亦可使用蔡司Crossbeam结合FIB-SEM断层扫描,实现神经元的三维可视化。

大尺寸小鼠大脑组织切片。由美国哈佛大学的J. Lichtman提供
大尺寸小鼠大脑组织切片。由美国哈佛大学的J. Lichtman提供

大尺寸小鼠大脑组织切片。由美国哈佛大学的J. Lichtman提供

大尺寸小鼠大脑组织切片。由美国哈佛大学的J. Lichtman提供

以极高速度进行扫描的电子显微技术

蔡司开发出一种用于样品大区域成像的新型多光束扫描电子显微镜技术,即蔡司MultiSEM系列。MultiSEM与带自动条带收集装置的(可将样品切成超薄切片的)超薄切片机协作,通过阵列断层扫描显著提升了三维超分辨率数据的采集速度,现可实现以高分辨率对更大体积(1 mm³)的脑组织成像。

小鼠大脑超薄切片。由美国哈佛大学的M. Ocana提供
小鼠大脑超薄切片。由美国哈佛大学的M. Ocana提供

小鼠大脑超薄切片。由美国哈佛大学的M. Ocana提供

小鼠大脑超薄切片。由美国哈佛大学的M. Ocana提供

在更广泛的环境下分析超微结构信息

您可以将使用蔡司Axio Observer等宽场显微镜采集到的大观察视野数据与使用扫描电子显微镜(SEM)采集到的超微结构信息相结合。蔡司ZEN Connect软件使您能够结合来自任何蔡司成像源的数据,并观察大脑不同部位与相关的各种神经元细胞之间的相互作用。

此示例显示了超薄的小鼠大脑切片。预览图(左)采用宽场显微镜成像。突触蛋白-1用Alexa Fluor 647荧光标记(绿色),定位于突触前囊泡;桥蛋白使用Alexa Fluor 594标记(红色),定位于突触后蛋白网络;细胞核采用DAPI染色(蓝色)。预览图用于导航和感兴趣区域重定位。局部图片采用扫描电子显微镜成像(右)。

Thy1-EGFP小鼠大脑,使用iDISCO改良版进行透明化处理
Thy1-EGFP小鼠大脑,使用iDISCO改良版进行透明化处理

Thy1-EGFP小鼠大脑,使用iDISCO改良版进行透明化处理,以光片显微技术成像。由美国加州大学欧文分校的S. Gandhi和美国Translucence Biosystems公司提供

Thy1-EGFP小鼠大脑,使用iDISCO改良版进行透明化处理,以光片显微技术成像。由美国加州大学欧文分校的S. Gandhi和美国Translucence Biosystems公司提供

带透明化脑组织的荧光神经元的深度成像

通过光透方法可以对大脑深处的荧光标记神经元进行显微成像。激光片层扫描显微系统(例如蔡司Lightsheet 7)或共聚焦显微镜(例如蔡司LSM 9系列)使您能够在极短时间内对透明化大脑内的神经元进行清晰、高分辨率的三维成像。

  • 通过CLARITY进行透明化处理的小鼠大脑。

    神经元,使用Thy1-GFP标记并通过共聚焦显微镜采集。数据集深度为800 µm。由德国神经生物学马克斯·普朗克研究所的T. Ruff提供
  • 1

    * 本页所示图像仅为研究内容。蔡司明确排除基于Axioscan 7玻片扫描仪生成的信息对可能受影响的患者进行诊断或推荐治疗的可能性。