Laying the Foundation for Success in Cataract Surgery with State-of-the-Art Technology, Part 2
Anterior chamber stability and safe cataract surgery
Numerous factors contribute to success in cataract surgery and influence the experience for patients, surgeons, and their surgical team. In this four-part interactive program, leading cataract surgeons provide insights on strategies for optimizing outcomes in cataract surgery. It begins with tips for a proper preoperative evaluation that will help surgeons plan the procedure, minimize the risk of intraoperative complications, and achieve the desired visual results. The rest of the program is devoted to developments in technology that improve safety, efficacy, and efficiency.
Part 2: Anterior chamber stability and safe cataract surgery
Over the past 50 years, phacoemulsification machines have undergone a constant process of improvement, and this evolutionary process has consisted of numerous incremental upgrades. In particular, there has been attention to developing advanced fluidics systems that will maintain intraocular pressure (IOP) control and anterior chamber stability with the aims of reducing intraoperative complications, improving surgical outcomes, and increasing patient satisfaction.
What’s new in phacoemulsification
The ZEISS QUATERA 700 is the latest entry into the space of modern phacoemulsification systems with advanced fluidics. I was involved in the development of the device, which took place over a period of about 5 years, and I have used it to perform over 1000 cases. In my opinion, the QUATERA 700 stands out from the competition for a variety of reasons, but particularly because of its novel patented QUATTRO pump (Figure 3). Neither a peristaltic nor a venturi system, the QUATTRO pump is a membrane pump operating via four syringe-like chambers that provide synchronized and reciprocal exchange of infusion and aspiration. It has two infusion chambers that variably control infusion rate and two aspiration chambers that control the aspiration and vacuum levels. The pump’s sensors measure actual irrigation and aspiration fluid volume, and the technology automatically and quickly compensates for incision leakage to maintain the preset IOP and a very stable anterior chamber.
The IOP can be set between 30 mmHg and 120 mmHg. Using the QUATERA 700, I usually set IOP at 40 mmHg or 50 mmHg. Even in cases where there is excessive leaking from a wide incision, I have not experienced surge because the QUATTRO pump compensates for the leakage (Figure 4).
As a nice convenience when operating with the QUATERA 700, I am able to use BSS that comes in either a bag or a bottle. Some other phacoemulsification machines accommodate only a bag or only a bottle. For example, the Centurion Vision System (Alcon), which features a peristaltic pump with active fluidics, can only use a specific BSS bag from the device manufacturer because the container has to be compressed between two metal plates to provide forced infusion. The Stellaris (Bausch+Lomb) has a vacuum-based pump that uses forced infusion from a rigid bottle through a connected air pump. Furthermore, these systems as well as the WHITESTAR SIGNATURE PRO (Johnson & Johnson Vision), which features both peristaltic and venturi pumps and can use either a bag or bottle for gravity driven passive fluid infusion, provide only an approximate increase in irrigation to compensate for surge because they do not directly measure the volume of fluid infused versus the volume of fluid aspirated, and they do not have mechanisms to compensate for incision leaks.
Surgical efficiency, safety and convenience
In addition to its QUATTRO pump, the QUATERA 700 has other features that I find helpful for enhancing my surgical safety, efficiency, and convenience.These include innovative technology for ultrasound management that helps to reduce ultrasound energy usage. Known as Power on Demand (POD), this advanced technology automatically activates ultrasound power upon occlusion of the aspiration hole with nuclear material and automatically deactivates ultrasound once the occlusion is cleared.
Therefore, when removing fragments, surgeons using the QUATERA 700 can keep the phacoemulsification tip in the center of the anterior chamber and press the foot pedal all the way down because phacoemulsification will only be activated once the fragment comes to the tip and occludes the aspiration hole. Using POD, surgeons can concentrate on what is going on inside the eye. Eliminating the need to think about pressing and releasing the foot pedal to modulate ultrasound delivery reduces the stress of the surgical experience for me. I find POD is particularly useful for cases with harder cataracts where there is a need to limit the amount of ultrasound, but in my opinion it is also helpful for preventing beginning surgeons from using too much ultrasound when operating on soft cataracts. I think that inexperienced surgeons have a habit of using ultrasound unnecessarily in these cases, and POD addresses that situation by limiting ultrasound activation to times of fragment occlusion.
Compatibility with the ZEISS CALLISTO eye system and the ZEISS FORUM is another feature of the QUATERA 700 that I greatly appreciate in my daily routine because I believe this integration enables more controlled and efficient surgery. Please refer to the section titled “The advantages of a digital workplace in modern cataract surgery” by Dr Florian Kretz for detailed information on his streamlined digital workflow.
Comparative clinical evaluation
To confirm my clinical impressions about the surgical performance and safety of QUATERA 700, I conducted a single surgeon clinical study randomizing eyes to undergo surgery using the QUATERA 700, Centurion Vision System, or WHITESTAR SIGNATURE PRO . The primary aim of the study was to compare anterior chamber stability using the different platforms, but we also looked at surgical efficiency (effective phaco time and total phaco time, time taken per case according to nucleus grade), incidence of intraoperative complications, and corneal parameters as an indicator of ultrasound usage.
The study included 90 eyes with a soft cataract (LOCS 1 to 2) and 90 eyes with a dense cataract (LOCS 2+ to 4). In all cases, phacoemulsification was performed through a 2.2 mm clear corneal incision using a direct chop technique and with machine parameters chosen as the maximum for each platform (Table 1). All eyes received the same model foldable posterior chamber IOL.