Advanced Reconstruction Toolbox

State-of-the-Art Reconstruction Technologies for Your ZEISS X-ray Microscope or microCT​

Enrich your research and increase the ROI of your ZEISS Xradia X-ray platform​

Unique Advanced Reconstruction Toolbox (ART) offerings leverage AI and a deep understanding of both X-ray physics and customer applications to solve some of the hardest imaging challenges in new and innovative ways. These optional modules are workstation-based solutions that provide easy access and usability.​

Built by ZEISS with continuously developed algorithms and unique workflows​. Platform for continuously launching ground-breaking innovations from ZEISS X-ray Microscopy​.

Image reconstruction technologies enhance X-ray system performance​:

  • Resolution​ / contrast​ / image quality​
  • Throughput
  • Diverse sample types, sizes, and shapes​
  • ​Ease-of-use
  • Artifact reduction

An A12 smartphone package acquired using DeepScout

For a large field of view scan, a high res scan to train the model, and high resolution reconstruction to LFOV.

Soy flower
Soy flower

ZEISS DeepScout​

Resolution at field of view, throughput at field of view​

ZEISS DeepScout uses high-resolution 3D microscopy datasets as training data for lower resolution, larger field of view datasets and upscales the larger volume data using a neural network model. ZEISS DeepScout, developed through continued algorithmic innovation enabled by the AI infrastructure from ZEISS, employs the unique Scout-and-Zoom capability to acquire richer information at higher resolution, including interior tomographies for large samples. ​

  • Take your large overview scan​
  • Feed it through the ZEISS DeepScout reconstruction algorithm​
  • Get resolution that approaches the resolution of a Zoom scan, but over a much larger field of view. ​

At its core, ZEISS DeepScout relies on the ability to generate multiscale, spatially registered datasets and uses that ability to train neural networks to improve the reconstruction. New capabilities, fueled by deep learning, mitigate the traditional trade-off between field of view and resolution. ​

DeepScout, on the left, shows significantly more cellular information than standard reconstruction, on the right.
Sample courtesy of Keith Duncan, Donal Danforth Plant Science Center.


How it works

Polymer electrolyte fuel cell (PEFC) Now, your volume scout includes the full field of view for your sample. A selected high-resolution scan trains the whole model to provide you with high resolution at FOV! This is game-changing AI, uniquely enabling visualization of fine structure across large fields of view at unprecedented speeds.

Mouse lung​
Mouse lung​ -  DeepRecon Pro

ZEISS DeepRecon Pro

Harvest the hidden opportunities in big data generated by your XRM​

The first commercially available deep learning reconstruction technology enables you to increase throughput by up to 10× without sacrificing novel resolution at a distance (RaaD). Alternatively, keep the same number of projections and enhance the image quality further. ZEISS DeepRecon provides significant AI-driven speed or image quality improvement.​

​ZEISS DeepRecon Pro is applicable to both unique samples as well as semi-repetitive and repetitive workflows. Self-train new machine learning network models on-site with an extremely easy-to-use interface. The one-click workflow of ZEISS DeepRecon Pro eliminates the need for a machine learning expert and can be seamlessly operated by even a novice user.​

​ZEISS DeepRecon Pro is now available on ZEISS Xradia Ultra nanoscale XRM.

Mouse lung imaged with Xradia Versa. Sample is iodine stained and captured with 3001 projections.  Reconstruction done using DeepRecon (right). Compared with the equivalent image reconstructed using FDK (left)

Standard reconstruction
DeepRecon Pro Ultra reconstruction

DeepRecon Pro


fcBGA flip chip imaged with ZEISS Xradia UltraXRM

left: Standard reconstruction, 1000 projections, 18-hour scan
right: DeepRecon Pro Ultra reconstruction, 250 projections, 4.5 hour scan, a 4x improvement.

Biomedical metal implant in bone. Without MARS, left. With MARS, right.​
Biomedical metal implant in bone. Without MARS, left. With MARS, right.​

Materials Aware Reconstruction Solution (MARS)

Superior image quality for highly attenuating samples​

MARS is a reconstruction algorithm that is aware of the constituents within a reconstruction. A challenge in X-ray reconstruction in a lab setting is that imaging with a polychromatic source creates different X-ray energies to generate a phenomenon called beam hardening. This effect is particularly challenging when your material is very dense and embedded in relatively less dense material. MARS tells the reconstruction system how to compensate for the effect of extreme beam hardening in the regions between very dense objects. This is important in applications like biomaterials, where you might be looking at implants next to bone or tissue. Or electronics where extremely dense solder balls appear next to other less dense materials on a printed circuit board, generating strong artifacts. MARS reconstructs your images to compensate for these effects. ​

Biomedical metal implant in bone. Without MARS, left. With MARS, right.​

Rayon fibers. Sample courtesy Dr. Sherry Mayo & Dr. David Fox, CSIRO, Australia.
Rayon fibers. Sample courtesy Dr. Sherry Mayo & Dr. David Fox, CSIRO, Australia.


Enhanced image contrast and improved segmentation​

ZEISS PhaseEvolve is a patent-pending postprocessing reconstruction algorithm that enhances the image contrast by revealing material contrast uniquely inherent to X-ray microscopy, which can often be obscured by phase effects in low-medium density samples or high-resolution datasets. Perform more accurate quantitative analysis with improved contrast and segmentation of your results​.

Rayon fibers were imaged at 1.5 μm/voxel resolution and processed using ZEISS PhaseEvolve revealing the large distribution of radial  porosity along the length of the fibers.
Sample courtesy Dr. Sherry Mayo & Dr. David Fox, CSIRO, Australia.

Standard Reconstruction

ZEISS OptiRecon​

Fast and efficient iterative reconstruction solution​

A fast and efficient algorithm-based technology that delivers iterative reconstruction from your desktop, allowing you to achieve up to 4× faster scan times or enhanced image quality with equivalent throughput. ZEISS OptiRecon is an economical solution offering superior interior tomography or throughput on a broad class of samples.​

Camera module: 1200 projections in 90 minutes using standard FDK, left, vs. 300 projections in 22 minutes with OptiRecon, right. Comparable image quality in a fraction of the time.


    • ZEISS DeepRecon

      Faster throughput, superior image qualityfor industry

      Pages: 2
      File size: 1 MB
    • ZEISS OptiRecon for semiconductor packages

      Improve 3D X-ray image quality and increase scan speed by 2X

      Pages: 2
      File size: 1 MB
    • ZEISS PhaseEvolve

      Reveal contrast that has never been seen before

      Pages: 2
      File size: 2 MB
    • The building blocks of our solar system

      Studying the Winchcombe meteorite

      Pages: 4
      File size: 3 MB

Contact ZEISS Microscopy


Form is loading...

/ 4
Next Step:
  • Step 1
  • Step 2
  • Step 3
Contact us
Required Information
Optional Information

If you want to have more information on data processing at ZEISS please refer to our data privacy notice.