Understanding Intracellular Trafficking
Part of the lab focuses on investigating intracellular trafficking using various state of the art live cell imaging and super resolution fluorescence imaging techniques. They are particularly interested in clathrin-mediated endocytosis (CME), a process by which cells uptake proteins and other macromolecules by forming budded structures coated with clathrin on the plasma membrane. Various viruses, specifically viruses like Influenza A virus, SARS CoV-2, and HIV, can hijack CME and similar processes to gain access to the cell.
In their recent work, Prof. Liu's team investigated the role of epsin, a membrane bending protein, in enabling IAV entry via CME. It has been shown that upon IAV binding to the plasma membrane, epsin can specifically bind to cell surface ubiquitinated receptors. They showed that epsin’s interaction with proteins at the site of IAV binding initiated its membrane bending mechanism. Their findings show the ability of IAVs to hijack activity of membrane bending proteins to initiate membrane bending and receptor-mediated endocytosis for cellular entry.